AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High-voltage-resistant wafer-scale 4H-SiC ultraviolet photodetector with high uniformity enabled by electric field distribution modulation

Wanglong Wu1Shuo Liu1Zhiyuan Liu2Xinyun Zhou1Xiong Yang3Xinyun He3Qinglin Xia1Mianzeng Zhong1( )Jingbo Li4( )Jun He1( )
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
Zhejiang Xinke Semiconductor Co., Ltd, Hangzhou 311421, China
College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
Show Author Information

Graphical Abstract

A high-voltage-resistant wafer-scale 4H-SiC ultraviolet photodetector enabled by electric field distribution modulation to reduce the dark current is reported, which exhibits remarkable ultraviolet photodetection range (from 240 and 380 nm) with high responsivity (105.7 A/W), great detectivity (1.01 × 1014 Jones), large light on/off ratio (1.84 × 105), and low dark current (pA-level), and features nA-level dark current at 1 kV bias voltage.

Abstract

Wide bandgap semiconductors are ideal materials for ultraviolet (UV) photodetectors due to their stable optoelectronic properties and high efficient UV light absorption. However, photodetectors based on pure wide bandgap semiconductors typically have large dark current that inhibit the devices from generating high UV photoresponse. Herein, a high-voltage-resistant wafer-scale 4H-SiC UV photodetector enabled by electric field distribution modulation is proposed. As the P+ region introduced by the ion implantation process affects the electric field distribution and suppresses the Schottky barrier lowering effect, the dark current of the device reaches pA-level, and remains nA-level at a bias voltage of 1 kV. Meanwhile, the device exhibits superior photoresponse, including a prominent responsivity of 105.7 A/W, a remarkable detectivity of 1.01 × 1014 Jones, an outstanding photoconductive gain of 477, and a high light on/off ratio of 1.84 × 105. This device provides a reliable solution for high-performance UV photodetectors that require high-voltage-resistant in special areas, and the wafer-scale fabrication process makes it feasible for practical applications.

Electronic Supplementary Material

Download File(s)
7259_ESM.pdf (2.2 MB)

References

[1]

Hatch, S. M.; Briscoe, J.; Dunn, S. A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater. 2013, 25, 867–871.

[2]

Kong, W. Y.; Wu, G. A.; Wang, K. Y.; Zhang, T. F.; Zou, Y. F.; Wang, D. D.; Luo, L. B. Graphene-β–Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater. 2016, 28, 10725–10731.

[3]

Gong, C. H.; Chu, J. W.; Qian, S. F.; Yin, C. J.; Hu, X. Z.; Wang, H. B.; Wang, Y.; Ding, X.; Jiang, S. C.; Li, A. L. et al. Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gate-controlled deep-ultraviolet phototransistors. Adv. Mater. 2020, 32, 1908242.

[4]

Cao, F.; Liu, Y.; Liu, M.; Han, Z. Y.; Xu, X. B.; Fan, Q. L.; Sun, B. Wide bandgap semiconductors for ultraviolet photodetectors: Approaches, applications, and prospects. Research 2024, 7, 0385.

[5]

Wu, W. L.; Liu, C. K.; Han, L. X.; Wang, X. Z.; Li, J. B. Wafer-scale high sensitive UV photodetectors based on novel AlGaN/n-GaN/p-GaN heterostructure HEMT. Appl. Surf. Sci. 2023, 618, 156618.

[6]

Um, D. Y.; Chandran, B.; Kim, J. Y.; Oh, J. K.; Kim, S. U.; An, J. U.; Lee, C. R.; Ra, Y. H. New charge carrier transport-assisting paths in ultra-long GaN microwire UV photodetector. Adv. Funct. Mater. 2023, 33, 2306143.

[7]

Chen, M. X.; Zhao, B.; Hu, G. F.; Fang, X. S.; Wang, H.; Wang, L.; Luo, J.; Han, X.; Wang, X. D.; Pan, C. F. et al. Piezo-phototronic effect modulated deep UV photodetector based on ZnO-Ga2O3 heterojuction microwire. Adv. Funct. Mater. 2018, 28, 1706379.

[8]

Li, D. B.; Sun, X. J.; Song, H.; Li, Z. M.; Chen, Y. R.; Jiang, H.; Miao, G. Q. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 2012, 24, 845–849.

[9]

Zhao, B.; Wang, F.; Chen, H. Y.; Zheng, L. X.; Su, L. X.; Zhao, D. X.; Fang, X. S. An ultrahigh responsivity (9.7 mA·W−1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater. 2017, 27, 1700264.

[10]

Zhang, Y. M.; Wang, Y. C.; Wang, L. F.; Zhu, L. P.; Wang, Z. L. Highly sensitive photoelectric detection and imaging enhanced by the pyro-phototronic effect based on a photoinduced dynamic schottky effect in 4H-SiC. Adv. Mater. 2022, 34, 2204363.

[11]

Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Nevius, M. S.; Wang, F.; Shepperd, K.; Palmer, J.; Bertran, F.; Le Fèvre, P.; Kunc, J. et al. A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat. Phys. 2013, 9, 49–54.

[12]

Siddiqui, A.; Khosa, R. Y.; Usman, M. High-k dielectrics for 4H-silicon carbide: Present status and future perspectives. J. Mater. Chem. C 2021, 9, 5055–5081.

[13]

Yin, Z. P.; Yang, C.; Zhang, F. L.; Su, Y.; Qin, F. W.; Wang, D. J. Low-temperature re-oxidation of near-interface defects and voltage stability in SiC MOS capacitors. Appl. Surf. Sci. 2020, 531, 147312.

[14]

Okino, H.; Kameshiro, N.; Konishi, K.; Shima, A.; Yamada, R. I. Analysis of high reverse currents of 4H-SiC Schottky-barrier diodes. J. Appl. Phys. 2017, 122, 235704.

[15]

She, X.; Huang, A. Q.; Lucía, Ó.; Ozpineci, B. Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205.

[16]

Shen, Y.; Jones, A. H.; Yuan, Y.; Zheng, J. Y.; Peng, Y. W.; VanMil, B.; Olver, K.; Sampath, A. V.; Parker, C.; Opila, E. et al. Near ultraviolet enhanced 4H-SiC schottky diode. Appl. Phys. Lett. 2019, 115, 261101.

[17]

Hou, Y. S.; Sun, C. Z.; Wu, J. K.; Hong, R. D.; Cai, J. F.; Chen, X. P.; Lin, D. Q.; Wu, Z. Y. Effect of epitaxial layer’s thickness on spectral response of 4H-SiC P-I-N ultraviolet photodiodes. Electron. Lett. 2019, 55, 216–218.

[18]

Zhang, F.; Mo, Z. X.; Cui, B. C.; Liu, S.; Xia, Q. L.; Li, B.; Li, L. W.; Zhang, Z. W.; He, J.; Zhong, M. Z. Bandgap engineering of BiIns nanowire for wide-spectrum, high-responsivity, and polarimetric-sensitive detection. Adv. Funct. Mater. 2023, 33, 2306077.

[19]

Zhang, F.; Yu, Y. L.; Mo, Z. X.; Huang, L.; Xia, Q. L.; Li, B.; Zhong, M. Z.; He, J. Alloying-engineered high-performance broadband polarized Bi1.3In0.7Se3 photodetector with ultrafast response. Nano Res. 2022, 15, 8451–8457.

[20]

Mo, Z. X.; Zhang, F.; Wang, D. Y.; Cui, B. C.; Xia, Q. L.; Li, B.; He, J.; Zhong, M. Z. Ultrafast-response and broad-spectrum polarization sensitive photodetector based on Bi1.85In0.15S3 nanowire. Appl. Phys. Lett. 2022, 120, 201105.

[21]

Zhong, M. Z.; Cui, B. C.; Mo, Z. X.; Yu, Y. L.; Xia, Q. L.; Zhang, F.; Zhou, Z. Q.; Huang, L.; Li, B.; Yang, J. H. et al. Gate controllable band alignment transition in 2D black-arsenic/WSe2 heterostructure. Appl. Phys. Rev. 2023, 10, 021416.

[22]

Luo, P.; Zhuge, F. W.; Wang, F. K.; Lian, L. Y.; Liu, K. L.; Zhang, J. B.; Zhai, T. Y. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm. ACS Nano 2019, 13, 9028–9037.

[23]

Wu, W. L.; Liu, Z. Y.; Qiu, Z. C.; Wu, Z. Q.; Li, Z. M.; Yang, X.; Han, L. X.; Li, C. Y.; Huo, N. J.; Wang, X. Z. et al. An ultrasensitive ReSe2/WSe2 heterojunction photodetector enabled by gate modulation and its development in polarization state identification. Adv. Opt. Mater. 2024, 12, 2301410.

[24]

Zhao, F. P.; Wang, D. Y.; Zhang, F.; Cui, B. C.; Xia, Q. L.; Zhong, M. Z. Gate-controlled photoresponse improvement in b-AsP/WSe2 heterostructures with type-I band alignment. Appl. Phys. Lett. 2023, 122, 151105.

[25]

Aichinger, T.; Lenahan, P. M.; Tuttle, B. R.; Peters, D. A nitrogen-related deep level defect in ion implanted 4H-SiC pn junctions—A spin dependent recombination study. Appl. Phys. Lett. 2012, 100, 112113.

[26]

Zhang, F.; Shi, H.; Yu, Y. L.; Liu, S.; Liu, D. Y.; Zhou, X. Y.; Yuan, L.; Shi, J. Q.; Xia, Q. L.; Wei, Z. M. et al. Dynamic band-alignment modulation in MoTe2/SnSe2 heterostructure for high performance photodetector. Adv. Opt. Mater. 2024, 12, 2303088.

[27]

Lu, J. T.; Zheng, Z. Q.; Yao, J. D.; Gao, W.; Zhao, Y.; Xiao, Y.; Li, J. B. 2D In2S3 nanoflake coupled with graphene toward high-sensitivity and fast-response bulk-silicon schottky photodetector. Small 2019, 15, 1904912.

[28]

Liu, Y. C.; Zhang, Y. X.; Zhao, K.; Yang, Z.; Feng, J. S.; Zhang, X.; Wang, K.; Meng, L. N.; Ye, H. C.; Liu, M. et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 2018, 30, 1707314.

[29]

Ismail, R. A.; Khashan, K. S.; Mahdi, R. O. Characterization of high photosensitivity nanostructured 4H-SiC/p-Si heterostructure prepared by laser ablation of silicon in ethanol. Mater. Sci. Semicond. Process 2017, 68, 252–261.

[30]

Jehad, A. K.; Unverdi, O.; Celebi, C. High voltage response of graphene/4H-SiC UV photodetector with low level detection. J. Alloys Compd. 2023, 969, 172288.

[31]

Zhang, R. J.; Liu, J.; Liu, G.; Yao, L.; Liu, Y.; Hong, R. D.; Zhang, F. A dual P-layer 4H-SiC P-I-N photodetector for the detection from extreme ultraviolet to ultraviolet-A. Electron. Lett. 2023, 59, e12953.

[32]

Yu, J. G.; Nie, Z. Z.; Dong, L. P.; Yuan, L.; Li, D. J.; Huang, Y.; Zhang, L. C.; Zhang, Y. M.; Jia, R. X. Influence of annealing temperature on structure and photoelectrical performance of β-Ga2O3/4H-SiC heterojunction photodetectors. J. Alloys Compd. 2019, 798, 458–466.

[33]

Sun, C. Z.; Chen, X. F.; Hong, R. D.; Li, X. M.; Xu, X. G.; Chen, X. P.; Cai, J. F.; Zhang, X. A.; Cai, W. W.; Wu, Z. Y. et al. Enhancing the photoelectrical performance of graphene/4H-SiC/graphene detector by tuning a Schottky barrier by bias. Appl. Phys. Lett. 2020, 117, 071102.

[34]

Wang, K. T.; Wang, H. L.; Chen, C. M.; Li, W. J.; Wang, L.; Hu, F.; Gao, F. M.; Yang, W. Y.; Wang, Z. X.; Chen, S. L. High-performance ultraviolet photodetector based on single-crystal integrated self-supporting 4H-SiC nanohole arrays. ACS Appl. Mater. Interfaces 2023, 15, 23457–23469.

[35]

Kyoung, S.; Jung, E. S.; Sung, M. Y. Post-annealing processes to improve inhomogeneity of Schottky barrier height in Ti/Al 4H-SiC Schottky barrier diode. Microelectron. Eng. 2016, 154, 69–73.

[36]

Shigiltchoff, O.; Bai, S.; Devaty, R. P.; Choyke, W. J.; Kimoto, T.; Hobgood, H. M.; Neudeck, P. G.; Porter, L. M. Schottky barriers for Pt, Mo and Ti on 6H and 4H SiC (0001), ( 0001¯), ( 11¯00) and ( 12¯10) faces measured by I V, C V and internal photoemission. Mater. Sci. Forum 2003, 433–436, 705–708.

[37]

Yu, Y. L.; Shen, T.; Long, H. R.; Zhong, M. Z.; Xin, K. Y.; Zhou, Z. Q.; Wang, X. Y.; Liu, Y. Y.; Wakabayashi, H.; Liu, L. Y. et al. Doping engineering in the MoS2/SnSe2 heterostructure toward high-rejection-ratio solar-blind UV photodetection. Adv. Mater. 2022, 34, 2206486.

[38]

Zheng, Z. Q.; Chen, P. F.; Lu, J. T.; Yao, J. D.; Zhao, Y.; Zhang, M. L.; Hao, M. M.; Li, J. B. Self-assembly In2Se3/SnSe2 heterostructure array with suppressed dark current and enhanced photosensitivity for weak signal. Sci. China Mater. 2020, 63, 1560–1569.

[39]

Renz, A. B.; Shah, V. A.; Vavasour, O. J.; Baker, G. W. C.; Bonyadi, Y.; Sharma, Y.; Pathirana, V.; Trajkovic, T.; Mawby, P.; Antoniou, M. et al. The optimization of 3.3 kV 4H-SiC JBS diodes. IEEE Trans. Electron Devices 2022, 69, 298–303.

[40]

Radhakrishnan, R.; Zhao, J. H. A 2-dimensional fully analytical model for design of high voltage junction barrier Schottky (JBS) diodes. Solid-State Electron. 2011, 63, 167–176.

Nano Research
Article number: 94907259
Cite this article:
Wu W, Liu S, Liu Z, et al. High-voltage-resistant wafer-scale 4H-SiC ultraviolet photodetector with high uniformity enabled by electric field distribution modulation. Nano Research, 2025, 18(4): 94907259. https://doi.org/10.26599/NR.2025.94907259

490

Views

107

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 November 2024
Revised: 13 January 2025
Accepted: 16 January 2025
Published: 19 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return