AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Dynamic liquid film nanochannels for adjustable ion and molecule transport

Chunxiao Liang1,2Dianyu Wang3Zhe Xu1Haitao Deng1,2Fan Xia4Ye Tian1,2,5,6( )
Key Laboratory of Bioinspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
Show Author Information

Graphical Abstract

Multiscale gating systems have broad applications in drug delivery, microreactors, sieving, biosensing, and other related fields. We construct dynamic liquid film nanochannels within an oil–water–solid system, which is reconfigurable, low-cost, and easy to fabricate. Multiscale gating can be achieved by positioning the oil droplet within regions of varying wettability in the capillary.

Abstract

Gating, a fundamental feature of biological nanochannels, enables the intelligent regulation of ion and molecule transport in response to specific requirements. Inspired by nature, numerous artificial gating systems have been researched through the functionalization of solid-state nanochannels. However, these gating systems typically allow only two transitions: “open” and “closed”, which makes it challenging to achieve multi-state transport. Herein, we construct dynamic liquid film nanochannels (DLFNs) by inserting an oil droplet into a capillary with gradient wettability that is filled with ionic solutions. The liquid film, formed between the oil and the capillary, functions as a nanochannel for ion and molecule transport, with its height dynamically adjusted through the capillary's gradient wettability. At a deeper level, the variations in liquid film thickness are driven by the interfacial water structure, which is mediated by hydrogen bonding interactions. Furthermore, unlike traditional solid-state nanochannels, which involve two phases (liquid/solid), the properties of DLFNs are influenced by three phases (oil/water/solid), resulting in distinct performance characteristics, such as reconfigurability, low cost, and ease of fabrication. This work provides an avenue for designing dynamic nanofluids and may spark promising applications of DLFNs with multiscale gating properties in drug delivery, microreactors, sieving, biosensing, and other related fields.

Electronic Supplementary Material

Download File(s)
7256_ESM.pdf (2.1 MB)

References

[1]

Sheng, Z. Z.; Zhang, M. C.; Liu, J.; Malgaretti, P.; Li, J. Y.; Wang, S. L.; Lv, W.; Zhang, R. R.; Fan, Y.; Zhang, Y. M. et al. Reconfiguring confined magnetic colloids with tunable fluid transport behavior. Natl. Sci. Rev. 2021, 8, nwaa301.

[2]

Wang, C.; Wang, D. Y.; Miao, W. N.; Shi, L. X.; Wang, S. T.; Tian, Y.; Jiang, L. Bioinspired ultrafast-responsive nanofluidic system for ion and molecule transport with speed control. ACS Nano 2020, 14, 12614–12620.

[3]

Wang, C.; Wang, D. Y.; Miao, W. N.; Tian, Y. Intelligent controllable microreactor based on superhydrophilic nanochannel. Chem. J. Chin. Univ. 2021, 42, 1276–1283.

[4]

Qiu, M.; Zhu, Z. P.; Wang, D. Y.; Xu, Z.; Xia, F.; Jiang, L.; Tian, Y. Superspreading-confined assembly of oriented 2D MOF membranes for biomimetic cation-regulated ion transport. Adv. Funct. Mater. 2024, 34, 2316040.

[5]

Liu, Y. L.; Yu, S. Y.; An, R. B.; Miao, Y. X.; Jiang, D. C.; Ye, D. J.; Xu, J. J.; Zhao, W. W. A fast and reversible responsive bionic transmembrane nanochannel for dynamic single-cell quantification of glutathione. ACS Nano 2023, 17, 17468–17475.

[6]

Fan, Y.; Sheng, Z. Z.; Chen, J.; Pan, H.; Chen, B. Y.; Wu, F.; Wang, S. L.; Chen, X. Y.; Hou, X. Visual chemical detection mechanism by a liquid gating system with dipole-induced interfacial molecular reconfiguration. Angew. Chem., Int. Ed. 2019, 58, 3967–3971.

[7]

Wang, H. M.; Fan, Y.; Hou, Y. Q.; Chen, B. Y.; Lei, J. M.; Yu, S. J.; Chen, X. Y.; Hou, X. Host–guest liquid gating mechanism with specific recognition interface behavior for universal quantitative chemical detection. Nat. Commun. 2022, 13, 1906.

[8]

Zhang, Y. M.; Han, Y. H.; Ji, X. L.; Zang, D. Y.; Qiao, L.; Sheng, Z. Z.; Wang, C. Y.; Wang, S. L.; Wang, M.; Hou, Y. Q. et al. Continuous air purification by aqueous interface filtration and absorption. Nature 2022, 610, 74–80.

[9]

Li, J.; Shi, Y. Y.; Qi, C. Y.; Zhang, B. W.; Xing, X. W.; Li, Y. L.; Chen, T. D.; Mao, X. N.; Zuo, Z. J.; Zhao, X. L. et al. Charging metal-organic framework membranes by incorporating crown ethers to capture cations for ion sieving. Angew. Chem., Int. Ed. 2023, 62, e202309918.

[10]

Wang, Y.; Yang, T.; Bao, C. Y.; Xu, X. L.; Zhang, J. Y.; Peng, B.; Luo, X. Z.; Wang, B. Y.; Luo, C.; Wang, Y. J. et al. Charged cyclodextrin membranes for precise molecular sieving. J. Mater. Chem. A 2022, 10, 22301–22310.

[11]

Hou, X.; Hu, Y. H.; Grinthal, A.; Khan, M.; Aizenberg, J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 2015, 519, 70–73.

[12]

Liang, C. X.; Wang, D. Y.; He, S. F.; Zhang, L.; Xia, F.; Tian, Y. Bioinspired cation-gated dynamic liquid film nanochannel for controlled transport of ions and molecules. Sci. China Mater. 2024, 67, 2523–2531.

[13]

Zhang, M. C.; Xing, C.; Huang, J. N.; Li, P. S.; Jiang, L.; Liu, L. F.; Jia, J. B.; Zhang, X. W.; Zhang, S. Q.; Liu, C. Y. Adaptive gating enhances intelligent membranes for cellular functions and precise separations. Adv. Funct. Mater. 2024, 34, 2310647.

[14]

Lin, K. B.; Lin, C. Y.; Polster, J. W.; Chen, Y. F.; Siwy, Z. S. Charge inversion and calcium gating in mixtures of ions in nanopores. J. Am. Chem. Soc. 2020, 142, 2925–2934.

[15]

Hou, X.; Yang, F.; Li, L.; Song, Y. L.; Jiang, L.; Zhu, D. B. A biomimetic asymmetric responsive single nanochannel. J. Am. Chem. Soc. 2010, 132, 11736–11742.

[16]

Gu, R. X.; de Groot, B. L. Central cavity dehydration as a gating mechanism of potassium channels. Nat. Commun. 2023, 14, 2178.

[17]

Powell, M. R.; Cleary, L.; Davenport, M.; Shea, K. J.; Siwy, Z. S. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat. Nanotechnol. 2011, 6, 798–802.

[18]

Polster, J. W.; Aydin, F.; de Souza, J. P.; Bazant, M. Z.; Pham, T. A.; Siwy, Z. S. Rectified and salt concentration dependent wetting of hydrophobic nanopores. J. Am. Chem. Soc. 2022, 144, 11693–11705.

[19]

Zhou, Y. H.; Hao, J. R.; Zhou, J. J.; Liao, J. W.; Wei, Y.; Chen, X. C.; Ning, C. Y.; Deng, X. L.; Jiang, L. Dynamically modulated gating process of nanoporous membrane at sub-2-nm speed. Matter 2022, 5, 281–290.

[20]

Wu, Y. F.; Yang, G.; Lin, M. C.; Kong, X. Y.; Mi, L.; Liu, S. Q.; Chen, G. S.; Tian, Y.; Jiang, L. Continuously tunable ion rectification and conductance in submicrochannels stemming from thermoresponsive polymer self-assembly. Angew. Chem., Int. Ed. 2019, 58, 12481–12485.

[21]

Miao, W. N.; Tian, S. H.; Yuan, Q. Z.; Tian, Y.; Jiang, L. Direct observation of spreading precursor liquids in a corner. Natl. Sci. Rev. 2023, 10, nwad119.

[22]

Ma, Y.; Sun, M.; Duan, X. X.; van den Berg, A.; Eijkel, J. C. T.; Xie, Y. B. Dimension-reconfigurable bubble film nanochannel for wetting based sensing. Nat. Commun. 2020, 11, 814.

[23]

Rabinowitz, J.; Whittier, E.; Liu, Z.; Jayant, K.; Frank, J.; Shepard, K. Nanobubble-controlled nanofluidic transport. Sci. Adv. 2020, 6, eabd0126.

[24]

Zhang, S. P.; Song, R. Y.; Zeng, H. O.; Wu, N. R.; Duan, H. W.; Wang, L. D. Exploring anomalous nanofluidic transport at the interfaces. Droplet 2024, 3, e110.

[25]

Wang, Z.; Guo, L. F.; Xiao, H. Y.; Cong, H.; Wang, S. T. A reversible underwater glue based on photo- and thermo-responsive dynamic covalent bonds. Mater. Horiz. 2020, 7, 282–288.

[26]

Liu, G. C.; Gao, M. J.; Chen, W.; Hu, X. Y.; Song, L. B.; Liu, B.; Zhao, Y. D. Ph-modulated ion-current rectification in a cysteine-functionalized glass nanopipette. Electrochem. Commun. 2018, 97, 6–10.

[27]

He, S. F.; Zhu, Z. P.; Zhang, B.; Tian, Y. Wetting thresholds for long-lasting superwettability: From intrinsic wetting boundary to critical roughness value. Chem. Eng. J. 2023, 454, 140058.

[28]

Hao, D. Z.; Wang, Z.; Liu, M. J.; Guo, X. L.; Wang, S. T.; Jiang, L. Strong anchoring of hydrogels through superwetting-assisted high-density interfacial grafting. Angew. Chem., Int. Ed. 2023, 62, e202215034.

[29]

Zhu, Z. P.; Tian, Y.; Chen, Y. P.; Gu, Z.; Wang, S. T.; Jiang, L. Superamphiphilic silicon wafer surfaces and applications for uniform polymer film fabrication. Angew. Chem., Int. Ed. 2017, 56, 5720–5724.

[30]

Parida, S. K.; Dash, S.; Patel, S.; Mishra, B. K. Adsorption of organic molecules on silica surface. Adv. Colloid Interface Sci. 2006, 121, 77–110.

[31]

Michalske, T. A.; Freiman, S. W. A molecular mechanism for stress-corrosion in vitreous silica. J. Am. Ceram. Soc. 1983, 66, 284–288.

[32]

Bunker, B. C. Molecular mechanisms for corrosion of silica and silicate glasses. J. Non-Cryst. Solids 1994, 179, 300–308.

[33]

Tian, Y.; Jiang, L. Intrinsically robust hydrophobicity. Nat. Mater. 2013, 12, 291–292.

[34]

Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.

[35]

Behrens, S. H.; Grier, D. G. The charge of glass and silica surfaces. J. Chem. Phys. 2001, 115, 6716–6721.

[36]

Levine, S.; Marriott, J. R.; Robinson, K. Theory of electrokinetic flow in a narrow parallel-plate channel. J. Chem. Soc., Faraday Trans. 2 1975, 71, 1–11.

[37]

Bocquet, L.; Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 2010, 39, 1073–1095.

[38]

Owens, D. K.; Wendt, R. C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747.

[39]

Schlisske, S.; Held, M.; Rödlmeier, T.; Menghi, S.; Fuchs, K.; Ruscello, M.; Morfa, A. J.; Lemmer, U.; Hernandez-Sosa, G. Substrate-independent surface energy tuning via siloxane treatment for printed electronics. Langmuir 2018, 34, 5964–5970.

[40]

Shi, C.; Yan, B.; Xie, L.; Zhang, L.; Wang, J. Y.; Takahara, A.; Zeng, H. B. Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil. Angew. Chem., Int. Ed. 2016, 55, 15017–15021.

[41]

Wang, Y.; Di, J. C.; Wang, L.; Li, X.; Wang, N.; Wang, B. X.; Tian, Y.; Jiang, L.; Yu, J. H. Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. Nat. Commun. 2017, 8, 575.

[42]

Asay, D. B.; Kim, S. H. Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B 2005, 109, 16760–16763.

[43]

Chen, L.; He, X.; Liu, H. S.; Qian, L. M.; Kim, S. H. Water adsorption on hydrophilic and hydrophobic surfaces of silicon. J. Phys. Chem. C 2018, 122, 11385–11391.

[44]

Chen, L.; Ngo, D.; Luo, J. W.; Gong, Y. F.; Xiao, C.; He, X.; Yu, B. J.; Qian, L. M.; Kim, S. H. Dependence of water adsorption on the surface structure of silicon wafers aged under different environmental conditions. Phys. Chem. Chem. Phys. 2019, 21, 26041–26048.

[45]

Argyris, D.; Cole, D. R.; Striolo, A. Dynamic behavior of interfacial water at the silica surface. J. Phys. Chem. C 2009, 113, 19591–19600.

[46]

Joutsuka, T.; Morita, A. Improved theory of difference vibrational spectroscopy and application to water. J. Chem. Theory Comput. 2016, 12, 5026–5036.

[47]

Lin, Z. Q.; Saito, H.; Sato, H.; Sugimoto, T. Positive and negative impacts of interfacial hydrogen bonds on photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2024, 146, 22276–22283.

[48]

Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huang-Fu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.

[49]

Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 2019, 18, 697–701.

[50]

Liu, F. H.; Yang, H.; Wang, J. Y.; Zhang, M. H.; Chen, T.; Hu, G. X.; Zhang, W.; Wu, J. Z.; Xu, S. J.; Wu, X. et al. Salinity-dependent adhesion of model molecules of crude oil at quartz surface with different wettability. Fuel 2018, 223, 401–407.

Nano Research
Article number: 94907256
Cite this article:
Liang C, Wang D, Xu Z, et al. Dynamic liquid film nanochannels for adjustable ion and molecule transport. Nano Research, 2025, 18(3): 94907256. https://doi.org/10.26599/NR.2025.94907256

303

Views

58

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 December 2024
Revised: 07 January 2025
Accepted: 13 January 2025
Published: 03 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return