Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Gating, a fundamental feature of biological nanochannels, enables the intelligent regulation of ion and molecule transport in response to specific requirements. Inspired by nature, numerous artificial gating systems have been researched through the functionalization of solid-state nanochannels. However, these gating systems typically allow only two transitions: “open” and “closed”, which makes it challenging to achieve multi-state transport. Herein, we construct dynamic liquid film nanochannels (DLFNs) by inserting an oil droplet into a capillary with gradient wettability that is filled with ionic solutions. The liquid film, formed between the oil and the capillary, functions as a nanochannel for ion and molecule transport, with its height dynamically adjusted through the capillary's gradient wettability. At a deeper level, the variations in liquid film thickness are driven by the interfacial water structure, which is mediated by hydrogen bonding interactions. Furthermore, unlike traditional solid-state nanochannels, which involve two phases (liquid/solid), the properties of DLFNs are influenced by three phases (oil/water/solid), resulting in distinct performance characteristics, such as reconfigurability, low cost, and ease of fabrication. This work provides an avenue for designing dynamic nanofluids and may spark promising applications of DLFNs with multiscale gating properties in drug delivery, microreactors, sieving, biosensing, and other related fields.
Sheng, Z. Z.; Zhang, M. C.; Liu, J.; Malgaretti, P.; Li, J. Y.; Wang, S. L.; Lv, W.; Zhang, R. R.; Fan, Y.; Zhang, Y. M. et al. Reconfiguring confined magnetic colloids with tunable fluid transport behavior. Natl. Sci. Rev. 2021, 8, nwaa301.
Wang, C.; Wang, D. Y.; Miao, W. N.; Shi, L. X.; Wang, S. T.; Tian, Y.; Jiang, L. Bioinspired ultrafast-responsive nanofluidic system for ion and molecule transport with speed control. ACS Nano 2020, 14, 12614–12620.
Wang, C.; Wang, D. Y.; Miao, W. N.; Tian, Y. Intelligent controllable microreactor based on superhydrophilic nanochannel. Chem. J. Chin. Univ. 2021, 42, 1276–1283.
Qiu, M.; Zhu, Z. P.; Wang, D. Y.; Xu, Z.; Xia, F.; Jiang, L.; Tian, Y. Superspreading-confined assembly of oriented 2D MOF membranes for biomimetic cation-regulated ion transport. Adv. Funct. Mater. 2024, 34, 2316040.
Liu, Y. L.; Yu, S. Y.; An, R. B.; Miao, Y. X.; Jiang, D. C.; Ye, D. J.; Xu, J. J.; Zhao, W. W. A fast and reversible responsive bionic transmembrane nanochannel for dynamic single-cell quantification of glutathione. ACS Nano 2023, 17, 17468–17475.
Fan, Y.; Sheng, Z. Z.; Chen, J.; Pan, H.; Chen, B. Y.; Wu, F.; Wang, S. L.; Chen, X. Y.; Hou, X. Visual chemical detection mechanism by a liquid gating system with dipole-induced interfacial molecular reconfiguration. Angew. Chem., Int. Ed. 2019, 58, 3967–3971.
Wang, H. M.; Fan, Y.; Hou, Y. Q.; Chen, B. Y.; Lei, J. M.; Yu, S. J.; Chen, X. Y.; Hou, X. Host–guest liquid gating mechanism with specific recognition interface behavior for universal quantitative chemical detection. Nat. Commun. 2022, 13, 1906.
Zhang, Y. M.; Han, Y. H.; Ji, X. L.; Zang, D. Y.; Qiao, L.; Sheng, Z. Z.; Wang, C. Y.; Wang, S. L.; Wang, M.; Hou, Y. Q. et al. Continuous air purification by aqueous interface filtration and absorption. Nature 2022, 610, 74–80.
Li, J.; Shi, Y. Y.; Qi, C. Y.; Zhang, B. W.; Xing, X. W.; Li, Y. L.; Chen, T. D.; Mao, X. N.; Zuo, Z. J.; Zhao, X. L. et al. Charging metal-organic framework membranes by incorporating crown ethers to capture cations for ion sieving. Angew. Chem., Int. Ed. 2023, 62, e202309918.
Wang, Y.; Yang, T.; Bao, C. Y.; Xu, X. L.; Zhang, J. Y.; Peng, B.; Luo, X. Z.; Wang, B. Y.; Luo, C.; Wang, Y. J. et al. Charged cyclodextrin membranes for precise molecular sieving. J. Mater. Chem. A 2022, 10, 22301–22310.
Hou, X.; Hu, Y. H.; Grinthal, A.; Khan, M.; Aizenberg, J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 2015, 519, 70–73.
Liang, C. X.; Wang, D. Y.; He, S. F.; Zhang, L.; Xia, F.; Tian, Y. Bioinspired cation-gated dynamic liquid film nanochannel for controlled transport of ions and molecules. Sci. China Mater. 2024, 67, 2523–2531.
Zhang, M. C.; Xing, C.; Huang, J. N.; Li, P. S.; Jiang, L.; Liu, L. F.; Jia, J. B.; Zhang, X. W.; Zhang, S. Q.; Liu, C. Y. Adaptive gating enhances intelligent membranes for cellular functions and precise separations. Adv. Funct. Mater. 2024, 34, 2310647.
Lin, K. B.; Lin, C. Y.; Polster, J. W.; Chen, Y. F.; Siwy, Z. S. Charge inversion and calcium gating in mixtures of ions in nanopores. J. Am. Chem. Soc. 2020, 142, 2925–2934.
Hou, X.; Yang, F.; Li, L.; Song, Y. L.; Jiang, L.; Zhu, D. B. A biomimetic asymmetric responsive single nanochannel. J. Am. Chem. Soc. 2010, 132, 11736–11742.
Gu, R. X.; de Groot, B. L. Central cavity dehydration as a gating mechanism of potassium channels. Nat. Commun. 2023, 14, 2178.
Powell, M. R.; Cleary, L.; Davenport, M.; Shea, K. J.; Siwy, Z. S. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat. Nanotechnol. 2011, 6, 798–802.
Polster, J. W.; Aydin, F.; de Souza, J. P.; Bazant, M. Z.; Pham, T. A.; Siwy, Z. S. Rectified and salt concentration dependent wetting of hydrophobic nanopores. J. Am. Chem. Soc. 2022, 144, 11693–11705.
Zhou, Y. H.; Hao, J. R.; Zhou, J. J.; Liao, J. W.; Wei, Y.; Chen, X. C.; Ning, C. Y.; Deng, X. L.; Jiang, L. Dynamically modulated gating process of nanoporous membrane at sub-2-nm speed. Matter 2022, 5, 281–290.
Wu, Y. F.; Yang, G.; Lin, M. C.; Kong, X. Y.; Mi, L.; Liu, S. Q.; Chen, G. S.; Tian, Y.; Jiang, L. Continuously tunable ion rectification and conductance in submicrochannels stemming from thermoresponsive polymer self-assembly. Angew. Chem., Int. Ed. 2019, 58, 12481–12485.
Miao, W. N.; Tian, S. H.; Yuan, Q. Z.; Tian, Y.; Jiang, L. Direct observation of spreading precursor liquids in a corner. Natl. Sci. Rev. 2023, 10, nwad119.
Ma, Y.; Sun, M.; Duan, X. X.; van den Berg, A.; Eijkel, J. C. T.; Xie, Y. B. Dimension-reconfigurable bubble film nanochannel for wetting based sensing. Nat. Commun. 2020, 11, 814.
Rabinowitz, J.; Whittier, E.; Liu, Z.; Jayant, K.; Frank, J.; Shepard, K. Nanobubble-controlled nanofluidic transport. Sci. Adv. 2020, 6, eabd0126.
Zhang, S. P.; Song, R. Y.; Zeng, H. O.; Wu, N. R.; Duan, H. W.; Wang, L. D. Exploring anomalous nanofluidic transport at the interfaces. Droplet 2024, 3, e110.
Wang, Z.; Guo, L. F.; Xiao, H. Y.; Cong, H.; Wang, S. T. A reversible underwater glue based on photo- and thermo-responsive dynamic covalent bonds. Mater. Horiz. 2020, 7, 282–288.
Liu, G. C.; Gao, M. J.; Chen, W.; Hu, X. Y.; Song, L. B.; Liu, B.; Zhao, Y. D. Ph-modulated ion-current rectification in a cysteine-functionalized glass nanopipette. Electrochem. Commun. 2018, 97, 6–10.
He, S. F.; Zhu, Z. P.; Zhang, B.; Tian, Y. Wetting thresholds for long-lasting superwettability: From intrinsic wetting boundary to critical roughness value. Chem. Eng. J. 2023, 454, 140058.
Hao, D. Z.; Wang, Z.; Liu, M. J.; Guo, X. L.; Wang, S. T.; Jiang, L. Strong anchoring of hydrogels through superwetting-assisted high-density interfacial grafting. Angew. Chem., Int. Ed. 2023, 62, e202215034.
Zhu, Z. P.; Tian, Y.; Chen, Y. P.; Gu, Z.; Wang, S. T.; Jiang, L. Superamphiphilic silicon wafer surfaces and applications for uniform polymer film fabrication. Angew. Chem., Int. Ed. 2017, 56, 5720–5724.
Parida, S. K.; Dash, S.; Patel, S.; Mishra, B. K. Adsorption of organic molecules on silica surface. Adv. Colloid Interface Sci. 2006, 121, 77–110.
Michalske, T. A.; Freiman, S. W. A molecular mechanism for stress-corrosion in vitreous silica. J. Am. Ceram. Soc. 1983, 66, 284–288.
Bunker, B. C. Molecular mechanisms for corrosion of silica and silicate glasses. J. Non-Cryst. Solids 1994, 179, 300–308.
Tian, Y.; Jiang, L. Intrinsically robust hydrophobicity. Nat. Mater. 2013, 12, 291–292.
Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.
Behrens, S. H.; Grier, D. G. The charge of glass and silica surfaces. J. Chem. Phys. 2001, 115, 6716–6721.
Levine, S.; Marriott, J. R.; Robinson, K. Theory of electrokinetic flow in a narrow parallel-plate channel. J. Chem. Soc., Faraday Trans. 2 1975, 71, 1–11.
Bocquet, L.; Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 2010, 39, 1073–1095.
Owens, D. K.; Wendt, R. C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747.
Schlisske, S.; Held, M.; Rödlmeier, T.; Menghi, S.; Fuchs, K.; Ruscello, M.; Morfa, A. J.; Lemmer, U.; Hernandez-Sosa, G. Substrate-independent surface energy tuning via siloxane treatment for printed electronics. Langmuir 2018, 34, 5964–5970.
Shi, C.; Yan, B.; Xie, L.; Zhang, L.; Wang, J. Y.; Takahara, A.; Zeng, H. B. Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil. Angew. Chem., Int. Ed. 2016, 55, 15017–15021.
Wang, Y.; Di, J. C.; Wang, L.; Li, X.; Wang, N.; Wang, B. X.; Tian, Y.; Jiang, L.; Yu, J. H. Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. Nat. Commun. 2017, 8, 575.
Asay, D. B.; Kim, S. H. Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B 2005, 109, 16760–16763.
Chen, L.; He, X.; Liu, H. S.; Qian, L. M.; Kim, S. H. Water adsorption on hydrophilic and hydrophobic surfaces of silicon. J. Phys. Chem. C 2018, 122, 11385–11391.
Chen, L.; Ngo, D.; Luo, J. W.; Gong, Y. F.; Xiao, C.; He, X.; Yu, B. J.; Qian, L. M.; Kim, S. H. Dependence of water adsorption on the surface structure of silicon wafers aged under different environmental conditions. Phys. Chem. Chem. Phys. 2019, 21, 26041–26048.
Argyris, D.; Cole, D. R.; Striolo, A. Dynamic behavior of interfacial water at the silica surface. J. Phys. Chem. C 2009, 113, 19591–19600.
Joutsuka, T.; Morita, A. Improved theory of difference vibrational spectroscopy and application to water. J. Chem. Theory Comput. 2016, 12, 5026–5036.
Lin, Z. Q.; Saito, H.; Sato, H.; Sugimoto, T. Positive and negative impacts of interfacial hydrogen bonds on photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2024, 146, 22276–22283.
Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huang-Fu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.
Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 2019, 18, 697–701.
Liu, F. H.; Yang, H.; Wang, J. Y.; Zhang, M. H.; Chen, T.; Hu, G. X.; Zhang, W.; Wu, J. Z.; Xu, S. J.; Wu, X. et al. Salinity-dependent adhesion of model molecules of crude oil at quartz surface with different wettability. Fuel 2018, 223, 401–407.
303
Views
58
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).