Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Oscillatory neural networks (ONNs) can handle image processing and combinational optimization problems with high biological plausibility. Coupled oscillators in ONNs mimic the neuronal oscillations and communication in the human brain. In this study, we demonstrate edge detection and graph coloring using a network of oscillatory neuromorphic devices comprising silicon nanosheet (NS)-gated diodes and series resistors. Silicon NS-gated diodes modulate the energy band structure in the channel through electrostatic doping, which tunes the amplitude and frequency of the oscillatory neuromorphic devices. Coupled oscillatory neuromorphic devices with capacitors can be in- or out-of-phase, enabling edge detection. Horizontal and vertical edge detections were performed using the coupling configuration. Furthermore, an ONN using oscillatory neuromorphic devices with resistive and capacitive couplings can solve graph coloring problems by representing the coloring solutions as phase differences. This study provides a method for achieving a compact silicon-based ONN that acts as a solver machine, as well as an image processor.
Xu, M. Y.; Chen, X. R.; Guo, Y. H.; Wang, Y.; Qiu, D.; Du, X. C.; Cui, Y.; Wang, X. F.; Xiong, J. Reconfigurable neuromorphic computing: Materials, devices, and integration. Adv. Mater. 2023, 35, 2301063.
Upadhyay, N. K.; Jiang, H.; Wang, Z. R.; Asapu, S.; Xia, Q. F.; Joshua Yang, J. Emerging memory devices for neuromorphic computing. Adv. Mater. Technol. 2019, 4, 1800589.
Carapezzi, S.; Boschetto, G.; Delacour, C.; Corti, E.; Plews, A.; Nejim, A.; Karg, S.; Todri-Sanial, A. Advanced design methods from materials and devices to circuits for brain-inspired oscillatory neural networks for edge computing. IEEE J. Emerg. Sel. Topics Circuits Syst. 2021, 11, 586–596.
Liu, H. F.; Qin, Y.; Chen, H. Y.; Wu, J. B.; Ma, J. H.; Du, Z. H.; Wang, N.; Zou, J. Y.; Lin, S.; Zhang, X. et al. Artificial neuronal devices based on emerging materials: Neuronal dynamics and applications. Adv. Mater. 2023, 35, 2205047.
Kim, H. W.; Kang, S. Y.; Moon, J.; Kim, N.; Hong, E.; Jeon, S.; Jeon, S.; Woo, J. Experimental robust spontaneous synchronizations in coupled NbO x oscillation neurons for unconventional computing. IEEE Trans. Electron Devices 2023, 70, 6699–6702.
Kim, H. W.; Jeon, S.; Jeon, S.; Hong, E.; Kim, N.; Woo, J. Brain-inspired mutual synchronization in cross-coupled NbO x oscillation neurons for oscillatory neural network applications. IEEE Access 2023, 11, 82443–82448.
Csaba, G.; Porod, W. Coupled oscillators for computing: A review and perspective. Appl. Phys. Rev. 2020, 7, 011302.
Nikonov, D. E.; Kurahashi, P.; Ayers, J. S.; Li, H.; Kamgaing, T.; Dogiamis, G. C.; Lee, H. J.; Fan, Y. P.; Young, I. A. Convolution inference via synchronization of a coupled CMOS oscillator array. IEEE J. Explor. Solid-State Comput. Devices Circuits 2020, 6, 170–176.
Romera, M.; Talatchian, P.; Tsunegi, S.; Abreu Araujo, F.; Cros, V.; Bortolotti, P.; Trastoy, J.; Yakushiji, K.; Fukushima, A.; Kubota, H. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 2018, 563, 230–234.
Kim, H. W.; Jeon, S.; Kang, H.; Hong, E.; Kim, N.; Woo, J. Understanding rhythmic synchronization of oscillatory neural networks based on NbO x artificial neurons for edge detection. IEEE Trans. Electron Devices 2023, 70, 3031–3036.
Parihar, A.; Shukla, N.; Jerry, M.; Datta, S.; Raychowdhury, A. Vertex coloring of graphs via phase dynamics of coupled oscillatory networks. Sci. Rep. 2017, 7, 911.
Maher, O.; Jiménez, M.; Delacour, C.; Harnack, N.; Núñez, J.; Avedillo, M. J.; Linares-Barranco, B.; Todri-Sanial, A.; Indiveri, G.; Karg, S. A CMOS-compatible oscillation-based VO2 Ising machine solver. Nat. Commun. 2024, 15, 3334.
Delacour, C.; Carapezzi, S.; Abernot, M.; Todri-Sanial, A. energy-performance assessment of oscillatory neural networks based on VO2 devices for future edge AI computing. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 10045–10058.
Wu, C. W. Graph coloring via synchronization of coupled oscillators. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 1998, 45, 974–978.
Chen, X.; Yang, D. L.; Hwang, G.; Dong, Y. J.; Cui, B. B.; Wang, D. C.; Chen, H. G.; Lin, N.; Zhang, W. Q.; Li, H. H. et al. Oscillatory neural network-based ising machine using 2D memristors. ACS Nano 2024, 18, 10758–10767.
Sharma, A. A.; Bain, J. A.; Weldon, J. A. Phase coupling and control of oxide-based oscillators for neuromorphic computing. IEEE J. Explor. Solid-State Comput. Devices Circuits 2015, 1, 58–66.
Hong, E.; Kim, H. W.; Choi, H.; Jeon, S.; Kim, N.; Woo, J. Demonstration of threshold switching in undoped SiO x layer for oscillation neurons. IEEE Trans. Electron Devices 2024, 71, 2228–2232.
Das, S. K.; Nandi, S. K.; Marquez, C. V.; Rúa, A.; Uenuma, M.; Puyoo, E.; Nath, S. K.; Albertini, D.; Baboux, N.; Lu, T. et al. Physical origin of negative differential resistance in V3O5 and its application as a solid-state oscillator. Adv. Mater. 2023, 35, 2208477.
Schofield, P.; Bradicich, A.; Gurrola, R. M.; Zhang, Y. W.; Brown, T. D.; Pharr, M.; Shamberger, P. J.; Banerjee, S. Harnessing the metal-insulator transition of VO2 in neuromorphic computing. Adv. Mater. 2023, 35, 2205294.
Li, Y. B.; Wang, Z. R.; Midya, R.; Xia, Q. F.; Yang, J. J. Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J. Phys. D: Appl. Phys. 2018, 51, 503002.
Lim, D.; Cho, K.; Kim, S. Single silicon neuron device enabling neuronal oscillation and stochastic dynamics. IEEE Electron Device Lett. 2021, 42, 649–652.
Lim, D.; Son, J.; Cho, K.; Kim, S. Quasi-nonvolatile silicon memory device. Adv. Mater. Technol. 2020, 5, 2000915.
Han, J. K.; Seo, M.; Kim, W. K.; Kim, M. S.; Kim, S. Y.; Kim, M. S.; Yun, G. J.; Lee, G. B.; Yu, J. M.; Choi, Y. K. Mimicry of excitatory and inhibitory artificial neuron with leaky integrate-and-fire function by a single MOSFET. IEEE Electron Device Lett. 2020, 41, 208–211.
Vijayarani, S.; Vinupriya, M. Performance analysis of canny and sobel edge detection algorithms in image mining. Int. J. Innovative Res. Comput. Commun. Eng. 2013, 1, 1760–1767.
461
Views
140
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).