AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Edge detection and graph coloring by network of oscillatory neuromorphic devices comprising silicon nanosheet-gated diodes

Yunwoo ShinHyojoo HeoKyoungah Cho ( )Sangsig Kim ( )
Department of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
Show Author Information

Graphical Abstract

In this research, we demonstrated a network of oscillatory neuromorphic devices to perform edge detection and solve the graph coloring problem. An oscillatory neuromorphic device comprised a silicon nanosheet-gated diode and a resistor. Edge detection was enabled by capacitively coupled devices, and the graph coloring problem was solved using resistively and capacitively coupled oscillatory neuromorphic devices.

Abstract

Oscillatory neural networks (ONNs) can handle image processing and combinational optimization problems with high biological plausibility. Coupled oscillators in ONNs mimic the neuronal oscillations and communication in the human brain. In this study, we demonstrate edge detection and graph coloring using a network of oscillatory neuromorphic devices comprising silicon nanosheet (NS)-gated diodes and series resistors. Silicon NS-gated diodes modulate the energy band structure in the channel through electrostatic doping, which tunes the amplitude and frequency of the oscillatory neuromorphic devices. Coupled oscillatory neuromorphic devices with capacitors can be in- or out-of-phase, enabling edge detection. Horizontal and vertical edge detections were performed using the coupling configuration. Furthermore, an ONN using oscillatory neuromorphic devices with resistive and capacitive couplings can solve graph coloring problems by representing the coloring solutions as phase differences. This study provides a method for achieving a compact silicon-based ONN that acts as a solver machine, as well as an image processor.

Electronic Supplementary Material

Download File(s)
7214_ESM.pdf (1.7 MB)

References

[1]

Xu, M. Y.; Chen, X. R.; Guo, Y. H.; Wang, Y.; Qiu, D.; Du, X. C.; Cui, Y.; Wang, X. F.; Xiong, J. Reconfigurable neuromorphic computing: Materials, devices, and integration. Adv. Mater. 2023, 35, 2301063.

[2]

Upadhyay, N. K.; Jiang, H.; Wang, Z. R.; Asapu, S.; Xia, Q. F.; Joshua Yang, J. Emerging memory devices for neuromorphic computing. Adv. Mater. Technol. 2019, 4, 1800589.

[3]

Carapezzi, S.; Boschetto, G.; Delacour, C.; Corti, E.; Plews, A.; Nejim, A.; Karg, S.; Todri-Sanial, A. Advanced design methods from materials and devices to circuits for brain-inspired oscillatory neural networks for edge computing. IEEE J. Emerg. Sel. Topics Circuits Syst. 2021, 11, 586–596.

[4]

Liu, H. F.; Qin, Y.; Chen, H. Y.; Wu, J. B.; Ma, J. H.; Du, Z. H.; Wang, N.; Zou, J. Y.; Lin, S.; Zhang, X. et al. Artificial neuronal devices based on emerging materials: Neuronal dynamics and applications. Adv. Mater. 2023, 35, 2205047.

[5]

Kim, H. W.; Kang, S. Y.; Moon, J.; Kim, N.; Hong, E.; Jeon, S.; Jeon, S.; Woo, J. Experimental robust spontaneous synchronizations in coupled NbO x oscillation neurons for unconventional computing. IEEE Trans. Electron Devices 2023, 70, 6699–6702.

[6]

Kim, H. W.; Jeon, S.; Jeon, S.; Hong, E.; Kim, N.; Woo, J. Brain-inspired mutual synchronization in cross-coupled NbO x oscillation neurons for oscillatory neural network applications. IEEE Access 2023, 11, 82443–82448.

[7]

Csaba, G.; Porod, W. Coupled oscillators for computing: A review and perspective. Appl. Phys. Rev. 2020, 7, 011302.

[8]
Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators. In International Symposium on Mathematical Problems in Theoretical Physics. Araki, H., Ed.; Springer: Berlin, Heidelberg, 1975; pp 420–422.
[9]

Nikonov, D. E.; Kurahashi, P.; Ayers, J. S.; Li, H.; Kamgaing, T.; Dogiamis, G. C.; Lee, H. J.; Fan, Y. P.; Young, I. A. Convolution inference via synchronization of a coupled CMOS oscillator array. IEEE J. Explor. Solid-State Comput. Devices Circuits 2020, 6, 170–176.

[10]
Dutta, S.; Khanna, A.; Chakraborty, W.; Gomez, J.; Joshi, S.; Datta, S. Spoken vowel classification using synchronization of phase transition nano-oscillators. In Proceedings of 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019, pp T128–T129.
[11]

Romera, M.; Talatchian, P.; Tsunegi, S.; Abreu Araujo, F.; Cros, V.; Bortolotti, P.; Trastoy, J.; Yakushiji, K.; Fukushima, A.; Kubota, H. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 2018, 563, 230–234.

[12]

Kim, H. W.; Jeon, S.; Kang, H.; Hong, E.; Kim, N.; Woo, J. Understanding rhythmic synchronization of oscillatory neural networks based on NbO x artificial neurons for edge detection. IEEE Trans. Electron Devices 2023, 70, 3031–3036.

[13]

Parihar, A.; Shukla, N.; Jerry, M.; Datta, S.; Raychowdhury, A. Vertex coloring of graphs via phase dynamics of coupled oscillatory networks. Sci. Rep. 2017, 7, 911.

[14]

Maher, O.; Jiménez, M.; Delacour, C.; Harnack, N.; Núñez, J.; Avedillo, M. J.; Linares-Barranco, B.; Todri-Sanial, A.; Indiveri, G.; Karg, S. A CMOS-compatible oscillation-based VO2 Ising machine solver. Nat. Commun. 2024, 15, 3334.

[15]

Delacour, C.; Carapezzi, S.; Abernot, M.; Todri-Sanial, A. energy-performance assessment of oscillatory neural networks based on VO2 devices for future edge AI computing. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 10045–10058.

[16]
Mallick, A.; Bashar, M. K.; Truesdell, D. S.; Calhoun, B. H.; Joshi, S.; Shukla, N. Graph coloring using coupled oscillator-based dynamical systems. In Proceedings of 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021, pp 1–5.
[17]

Wu, C. W. Graph coloring via synchronization of coupled oscillators. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 1998, 45, 974–978.

[18]
Shubham, S.; Mohanty, S.; Lashkare, S. Fault tolerance of oscillatory neural network using PMO oscillator. In Proceedings of 2024 8 th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Bangalore, India, 2024, pp 1–3.
[19]

Chen, X.; Yang, D. L.; Hwang, G.; Dong, Y. J.; Cui, B. B.; Wang, D. C.; Chen, H. G.; Lin, N.; Zhang, W. Q.; Li, H. H. et al. Oscillatory neural network-based ising machine using 2D memristors. ACS Nano 2024, 18, 10758–10767.

[20]
Delacour, C.; Carapezzi, S.; Abernot, M.; Boschetto, G.; Azemard, N.; Salles, J.; Gil, T.; Todri-Sanial, A. Oscillatory neural networks for edge AI computing. In Proceedings of 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, USA, 2021, pp 326–331.
[21]

Sharma, A. A.; Bain, J. A.; Weldon, J. A. Phase coupling and control of oxide-based oscillators for neuromorphic computing. IEEE J. Explor. Solid-State Comput. Devices Circuits 2015, 1, 58–66.

[22]

Hong, E.; Kim, H. W.; Choi, H.; Jeon, S.; Kim, N.; Woo, J. Demonstration of threshold switching in undoped SiO x layer for oscillation neurons. IEEE Trans. Electron Devices 2024, 71, 2228–2232.

[23]

Das, S. K.; Nandi, S. K.; Marquez, C. V.; Rúa, A.; Uenuma, M.; Puyoo, E.; Nath, S. K.; Albertini, D.; Baboux, N.; Lu, T. et al. Physical origin of negative differential resistance in V3O5 and its application as a solid-state oscillator. Adv. Mater. 2023, 35, 2208477.

[24]

Schofield, P.; Bradicich, A.; Gurrola, R. M.; Zhang, Y. W.; Brown, T. D.; Pharr, M.; Shamberger, P. J.; Banerjee, S. Harnessing the metal-insulator transition of VO2 in neuromorphic computing. Adv. Mater. 2023, 35, 2205294.

[25]

Li, Y. B.; Wang, Z. R.; Midya, R.; Xia, Q. F.; Yang, J. J. Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J. Phys. D: Appl. Phys. 2018, 51, 503002.

[26]

Lim, D.; Cho, K.; Kim, S. Single silicon neuron device enabling neuronal oscillation and stochastic dynamics. IEEE Electron Device Lett. 2021, 42, 649–652.

[27]

Lim, D.; Son, J.; Cho, K.; Kim, S. Quasi-nonvolatile silicon memory device. Adv. Mater. Technol. 2020, 5, 2000915.

[28]

Han, J. K.; Seo, M.; Kim, W. K.; Kim, M. S.; Kim, S. Y.; Kim, M. S.; Yun, G. J.; Lee, G. B.; Yu, J. M.; Choi, Y. K. Mimicry of excitatory and inhibitory artificial neuron with leaky integrate-and-fire function by a single MOSFET. IEEE Electron Device Lett. 2020, 41, 208–211.

[29]

Vijayarani, S.; Vinupriya, M. Performance analysis of canny and sobel edge detection algorithms in image mining. Int. J. Innovative Res. Comput. Commun. Eng. 2013, 1, 1760–1767.

[30]
Kumar, S.; Upadhyay, A. K.; Dubey, P.; Varshney, S. Comparative analysis for edge detection techniques. In Proceedings of 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 2021, pp 675–681.
Nano Research
Article number: 94907214
Cite this article:
Shin Y, Heo H, Cho K, et al. Edge detection and graph coloring by network of oscillatory neuromorphic devices comprising silicon nanosheet-gated diodes. Nano Research, 2025, 18(3): 94907214. https://doi.org/10.26599/NR.2025.94907214

461

Views

140

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 September 2024
Revised: 07 December 2024
Accepted: 25 December 2024
Published: 22 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return