Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Rational design of nanomedicine can efficiently improve the therapeutic activity of anticancer drugs; however, the current design strategies are to increase the concentration of drugs within targeted cells, which is not applicable to extracellular-targeted drugs. Herein, we report a nanoparticular aggregation strategy via magnetic actuation and host–guest interaction for extracellular drug delivery. The β-cyclodextrin (βCD)-decorated magnetic nanoparticles (βCD-MNPs) were first administrated and infiltrated into tumor tissue under the magnetic actuation, and then generated mild hyperthermia under alternating magnetic field (AMF) to improve the infiltration of another adamantane (Ad)-decorated NPs (Ad-NPs) into the tumor tissue. Subsequently, the βCD-MNP and Ad-NP would form micro-sized aggregation via the host–guest interaction, which could significantly enhance the enrichment and retention of extracellular-targeted drugs and also minimize their cellular uptake. This nanoparticular aggregation strategy remarkably improved the therapeutic activity of batimastat and PD-1/PD-L1 inhibitor 1 (BMS-1), both of which were extracellular-targeted drug. Such nanoparticular aggregation strategy represents a rational avenue for extracellular drug delivery.
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.
Wu, J. Y.; Pu, K. Y. Leveraging semiconducting polymer nanoparticles for combination cancer immunotherapy. Adv. Mater. 2024, 36, 2308924.
Yang, G.; Pan, X. X.; Feng, W. B.; Yao, Q. F.; Jiang, F. Y.; Du, F. L.; Zhou, X. F.; Xie, J. P.; Yuan, X. Engineering Au44 nanoclusters for NIR-II luminescence imaging-guided photoactivatable cancer immunotherapy. ACS Nano 2023, 17, 15605–15614.
Huang, J.; Liu, X. L.; Lin, M. Z.; Xiao, Z. C.; & Shuai, X. T. Light-inducible nanodrug-mediated photodynamic and anti-apoptotic synergy for enhanced immunotherapy in triple-negative breast cancer. Biomater. Sci. 2024, 12, 2639–2647.
Pang, X. R.; Fu, C. P.; Chen, J. B.; Su, M.; Wei, R. L.; Wang, Y.; Lin, W. X.; Wei, X. H.; Jiang, X. Q.; Yang, X. Z. et al. A manganese-phenolic network platform amplifying STING activation to potentiate MRI guided cancer chemo-/chemodynamic/immune therapy. Biomater. Sci. 2023, 11, 3840–3850.
Yu, H.; Wang, Q.; Zhang, X. M.; Tiemuer, A.; Wang, J.; Zhang, Y. Y.; Sun, X. L.; Liu, Y. Hot-band absorption assisted single-photon frequency upconversion luminescent nanophotosensitizer for 808 nm light triggered photodynamic immunotherapy of cancer. Biomater. Sci. 2023, 11, 2167–2176.
Wang, S.; Zhang, F. W.; Yu, G. C.; Wang, Z. T.; Jacobson, O.; Ma, Y.; Tian, R.; Deng, H. Z.; Yang, W. J.; Chen, Z. Y. et al. Zwitterionic-to-cationic charge conversion polyprodrug nanomedicine for enhanced drug delivery. Theranostics 2020, 10, 6629–6637.
He, Y. J.; Su, Z. G.; Xue, L. J.; Xu, H.; Zhang, C. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. J. Control. Release 2016, 229, 80–92.
Du, J. Z.; Sun, T. M.; Song, W. J.; Wu, J.; Wang, J. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. Angew. Chem., Int. Ed. 2010, 49, 3621–3626.
Zhu, Y. Q.; Song, Y. H.; Cao, Z. Y.; Dong, L.; Shen, S.; Lu, Y.; Yang, X. Z. A magnetically driven amoeba-like nanorobot for whole-process active drug transport. Adv. Sci. 2023, 10, 2204793.
Yu, W. Q.; Liu, R.; Zhou, Y.; Gao, H. L. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 2020, 6, 100–116.
Liang, M. Y.; Zhang, M. J.; Qiu, W.; Xiao, Y.; Ye, M. J.; Xue, P.; Kang, Y. J.; Sun, Z. J.; Xu, Z. G. Stepwise size shrinkage cascade-activated supramolecular prodrug boosts antitumor immunity by eliciting pyroptosis. Adv. Sci. 2022, 9, 2203353.
Zhu, S. S.; Gao, H.; Li, W. Y.; He, X. C.; Jiang, P. P.; Xu, F.; Jin, G. R.; Guo, H. Stimuli-responsive aptamer-drug conjugates for targeted drug delivery and controlled drug release. Adv. Healthc. Mater. 2024, 13, 2401020.
Wei, D. S.; Sun, Y.; Zhu, H.; Fu, Q. R. Stimuli-responsive polymer-based nanosystems for cancer theranostics. ACS Nano 2023, 17, 23223–23261.
Ding, D. D.; Mei, Z. H.; Huang, H.; Feng, W.; Chen, L.; Chen, Y.; Zhou, J. Q. Oxygen-independent sulfate radical for stimuli-responsive tumor nanotherapy. Adv. Sci. 2022, 9, 2200974.
Yan, X.; Li, K.; Xie, T. Q.; Jin, X. K.; Zhang, C.; Li, Q. R.; Feng, J.; Liu, C. J.; Zhang, X. Z. Bioorthogonal “click and release” reaction-triggered aggregation of gold nanoparticles combined with released lonidamine for enhanced cancer photothermal therapy. Angew. Chem., Int. Ed. 2024, 63, e202318539.
Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.
Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.
Price, L. S. L.; Stern, S. T.; Deal, A. M.; Kabanov, A. V.; Zamboni, W. C. A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics. Sci. Adv. 2020, 6, eaay9249.
Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine. J. Control. Release 2016, 244, 108–121.
You, Q. Y.; Hu, M. D.; Qian, H. Advanced nanoarchitectonics of drug delivery systems with pyroptosis inhibition for noncancerous disease treatment. Adv. Funct. Mater. 2024, 34, 2315199.
Kudryavtseva, V.; Sukhorukov, G. B. Features of anisotropic drug delivery systems. Adv. Mater. 2024, 36, 2307675.
Arévalo-Pérez, R.; Maderuelo, C.; Lanao, J. M. Recent advances in colon drug delivery systems. J. Control. Release 2020, 327, 703–724.
Cao, Z. Y.; Li, D. D.; Zhao, L.; Liu, M. T.; Ma, P. Y.; Luo, Y. L.; Yang, X. Z. Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery. Nat. Commun. 2022, 13, 2038.
Zhang, Y.; Zhao, G.; Chen, Y. F.; Zhou, S. K.; Wang, Y.; Sun, Y. Q.; Shen, S.; Xu, C. F.; Wang, J. Engineering nano-clustered multivalent agonists to cross-link TNF receptors for cancer therapy. Aggregate 2023, 4, e393.
Lao, X. Y.; Liu, Y.; Li, L. H.; Song, M. L.; Ma, Y. J.; Yang, M.; Chen, G. Y.; Hao, J. H. Plasmon-enhanced FRET biosensor based on Tm3+/Er3+ co-doped core–shell upconversion nanoparticles for ultrasensitive virus detection. Aggregate 2024, 5, e448.
Tang, S.; Meng, Q. S.; Sun, H. P.; Su, J. H.; Yin, Q.; Zhang, Z. W.; Yu, H. J.; Chen, L. L.; Chen, Y.; Gu, W. W. et al. Tumor-microenvironment-adaptive nanoparticles codeliver paclitaxel and siRNA to inhibit growth and lung metastasis of breast cancer. Adv. Funct. Mater. 2016, 26, 6033–6046.
Li, K.; Tay, F. R.; Yiu, C. K. Y. The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol. Ther. 2020, 207, 107465.
de Almeida, L. G. N.; Thode, H.; Eslambolchi, Y.; Chopra, S.; Young, D.; Gill, S.; Devel, L.; Dufour, A. Matrix metalloproteinases: From molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 2022, 74, 712–768.
Sleeboom, J. J. F.; van Tienderen, G. S.; Schenke-Layland, K.; van der Laan, L. J. W.; Khalil, A. A.; Verstegen, M. M. A. The extracellular matrix as hallmark of cancer and metastasis: From biomechanics to therapeutic targets. Sci. Transl. Med. 2024, 16, eadg3840.
Li, D.; Chen, X. H.; Dai, W. B.; Jin, Q.; Wang, D.; Ji, J.; Tang, B. Z. Photo-triggered cascade therapy: A NIR-II AIE luminogen collaborating with nitric oxide facilitates efficient collagen depletion for boosting pancreatic cancer phototheranostics. Adv. Mater. 2024, 36, 2306476.
Wu, P. K.; Zhang, H. T.; Yin, Y.; Sun, M. L.; Mao, S.; Chen, H. H.; Deng, Y. X.; Chen, S.; Li, S.; Sun, B. C. Engineered EGCG-containing biomimetic nanoassemblies as effective delivery platform for enhanced cancer therapy. Adv. Sci. 2022, 9, 2105894.
Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.
Xin, Q.; Wang, D. J.; Wang, S. H.; Zhang, L. R.; Liang, Q.; Yan, X. Y.; Fan, K. L.; Jiang, B. Tackling esophageal squamous cell carcinoma with ITFn-Pt(IV): A novel fusion of PD-L1 blockade, chemotherapy, and T-cell activation. Adv. Healthc. Mater. 2024, 13, 2303623.
Wang, K. W.; Jiang, M. L.; Li, T.; Liu, Y.; Zong, Q. Y.; Xu, Q.; Ullah, I.; Chen, Y. H.; Xue, W.; Yuan, Y. Y. A synergistic chemoimmunotherapy system leveraging PD-L1 blocking and bioorthogonal prodrug activation. Adv. Mater. 2024, 36, 2402322.
Liang, S.; Xiao, L. Y.; Chen, T.; Roa, P.; Cocco, E.; Peng, Z. W.; Yu, L.; Wu, M. Y.; Liu, J.; Zhao, X. Z. et al. Injectable nanocomposite hydrogels improve intraperitoneal co-delivery of chemotherapeutics and immune checkpoint inhibitors for enhanced peritoneal metastasis therapy. ACS Nano 2024, 18, 18963–18979.
Cao, F. F.; Jin, L. L.; Gao, Y.; Ding, Y.; Wen, H. Y.; Qian, Z. F.; Zhang, C. Y.; Hong, L. J.; Yang, H.; Zhang, J. J. et al. Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat. Nanotechnol. 2023, 18, 617–627.
Yang, H.; Yang, S. S.; Guo, Q. S.; Sheng, J. F.; Mao, Z. W. ATP-responsive manganese-based bacterial materials synergistically activate the cGAS-STING pathway for tumor immunotherapy. Adv. Mater. 2024, 36, 2310189.
Tizro, N.; Moniri, E.; Saeb, K.; Panahi, H. A.; Ardakani, S. S. Preparation and application of grafted β-cyclodextrin/thermo-sensitive polymer onto modified Fe3O4@SiO2 nano-particles for fenitrothion elimination from aqueous solution. Microchem. J. 2019, 145, 59–67.
Ke, Y.; Zhang, X. Y.; Liu, C. K.; Xiao, M.; Li, H.; Fan, J. C.; Fu, P. C.; Wang, S. H.; Zan, F.; Wu, G. Polypseudorotaxane functionalized magnetic nanoparticles as a dual responsive carrier for roxithromycin delivery. Mater. Sci. Eng. C 2019, 99, 159–170.
Chen, X. H.; Wang, S.; Chen, Y. X.; Xin, H. H.; Zhang, S. S.; Wu, D.; Xue, Y. N.; Zha, M. L.; Li, H. J.; Li, K. et al. Non-invasive activation of intratumoural gene editing for improved adoptive T-cell therapy in solid tumours. Nat. Nanotechnol. 2023, 18, 933–944.
Wang, Q.; Liang, Q. R.; Dou, J. X.; Zhou, H.; Zeng, C. C.; Pan, H. M.; Shen, Y. Q.; Li, Q.; Liu, Y.; Leong, D. T. et al. Breaking through the basement membrane barrier to improve nanotherapeutic delivery to tumours. Nat. Nanotechnol. 2024, 19, 95–105.
Dong, W.; Li, Z. B.; Hou, T. L.; Shen, Y. Q.; Guo, Z. X.; Su, Y. T.; Chen, Z. Q.; Pan, H. M.; Jiang, W.; Wang, Y. C. Multicomponent synthesis of imidazole-based ionizable lipids for highly efficient and spleen-selective messenger RNA delivery. J. Am. Chem. Soc. 2024, 146, 15085–15095.
Jiang, W.; Dong, W.; Li, M.; Guo, Z. X.; Wang, Q.; Liu, Y.; Bi, Y. H.; Zhou, H.; Wang, Y. C. Nitric oxide induces immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 2022, 16, 3881–3894.
Setyawati, M. I.; Wang, Q.; Ni, N. Y.; Tee, J. K.; Ariga, K.; Ke, P. C.; Ho, H. K.; Wang, Y. C.; Leong, D. T. Engineering tumoral vascular leakiness with gold nanoparticles. Nat. Commun. 2023, 14, 4269.
Duhachek-Muggy, S.; Qi, Y.; Wise, R.; Alyahya, L.; Li, H.; Hodge, J.; Zolkiewska, A. Metalloprotease-disintegrin ADAM12 actively promotes the stem cell-like phenotype in claudin-low breast cancer. Mol. Cancer 2017, 16, 32.
Yu, T.; Nie, W.; Hong, Z. H.; He, Y. H.; Chen, J.; Mi, X.; Yang, S. P.; Li, X. L.; Wang, B. L.; Lin, Y. Z. et al. Synergy of immunostimulatory genetherapy with immune checkpoint blockade motivates immune response to eliminate cancer. Adv. Funct. Mater. 2021, 31, 2100715.
Yu, J.; Liu, S.; Wang, Y. P.; He, X. D.; Zhang, Q. F.; Qi, Y. X.; Zhou, D. F.; Xie, Z. G.; Li, X. Y.; Huang, Y. B. Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioact. Mater. 2022, 7, 389–400.
133
Views
15
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).