AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (26.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Carbon nanodot-based flexible and self-powered white displays

Wei Zhang§Qing Lou§Junlu Sun ( )Juan LiaoGuangsong ZhengFuhang JiaoWu ChenXiang LiJiajia MengChong-Xin ShanLin Dong ( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China

§ Wei Zhang and Qing Lou contributed equally to this work.

Show Author Information

Graphical Abstract

Carbon nanodots (CDs)-based alternating current electroluminescent (ACEL) devices are presented for the first-time by blending high-efficient yellow-emitting CDs and ZnS:Cu phosphors as emissive layers. And self-powered CDs-based flexible white display systems are obtained by integrating with triboelectric nanogenerators (TENGs). These devices can render from cold white to warm white, with correlated color temperature ranging from 9705 to 4538 K, as the concentration ratios change from 22:2 to 22:8.

Abstract

Carbon nanodots (CDs) have emerged as a promising luminescent material, showing significant potential in biological imaging, information security, and illumination displays within the internet of things (IoT). However, CDs-based electroluminescent devices, especially flexible and self-powered white displays, remain scarcely reported, which limit their applications in human-machine interactions and wearable optoelectronics in the IoT. Herein, we present a pioneering CDs-based flexible and self-powered white display system with a Commission Internationale de L’Eclairage (CIE) coordinate of (0.31, 0.39) by integrating CDs-based alternating current electroluminescent (ACEL) devices with triboelectric nanogenerators. The CDs-based white ACEL devices can be dynamically modulated from light green to white under various supplied frequencies ranging from 50 to 500 Hz. The devices also render from cold white to warm white with correlated color temperature from 9705 to 4538 K, as the concentration ratios of ZnS:Cu phosphors to CDs change from 22:2 to 22:8. Furthermore, these devices exhibit excellent flexibility and stability, maintaining over 95% of their electroluminescent intensities after 4500 cycles even under a large bending angle of 180° with a bending radius of 4.9 mm. Finally, this CDs-based flexible and self-powered white display system is worn on the human body to realize real-time illumination display powered by biomechanical energy, such as hand slapping and walking. This work provides a novel design strategy toward high-performance CD-based flexible and self-powered white displays and expands their potential applications in wearable optoelectronics for the IoT.

Electronic Supplementary Material

Video
7117_Video S1.mp4
7117_Video S2.mp4
Download File(s)
7117_ESM.pdf (888.4 KB)

References

[1]

Zheng, G. S.; Shen, C. L.; Niu, C. Y.; Lou, Q.; Jiang, T. C.; Li, P. F.; Shi, X. J.; Song, R. W.; Deng, Y.; Lv, C. F. et al. Photooxidation triggered ultralong afterglow in carbon nanodots. Nat. Commun. 2024, 15, 2365.

[2]

Shen, C. L.; Lou, Q.; Lv, C. F.; Zang, J. H.; Qu, S. N.; Dong, L.; Shan, C. X. Bright and multicolor chemiluminescent carbon nanodots for advanced information encryption. Adv. Sci. 2019, 6, 1802331.

[3]

Qin, J. X.; Yang, X. G.; Shen, C. L.; Chang, Y.; Deng, Y.; Zhang, Z. F.; Liu, H.; Lv, C. F.; Li, Y. Z.; Zhang, C. et al. Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy 2022, 101, 107549.

[4]

Qin, J. X.; Yang, X. G.; Lv, C. F.; Li, Y. Z.; Chen, X. X.; Zhang, Z. F.; Zang, J. H.; Yang, X.; Liu, K. K.; Dong, L. et al. Humidity sensors realized via negative photoconductivity effect in nanodiamonds. J. Phys. Chem. Lett. 2021, 12, 4079–4084.

[5]

Ni, X.; Luo, J.; Liu, R.; Liu, X. Y. A novel flexible UV-cured carbon nanotube composite film for humidity sensing. Sens. Actuators B: Chem. 2019, 297, 126785.

[6]

Koulivand, H.; Shahbazi, A.; Vatanpour, V.; Rahmandoost, M. Novel antifouling and antibacterial polyethersulfone membrane prepared by embedding nitrogen-doped carbon dots for efficient salt and dye rejection. Mater. Sci. Eng.: C 2020, 111, 110787.

[7]

Deng, Y.; Shen, C. L.; Zhao, W. B.; Zheng, G. S.; Jiao, F. H.; Lou, Q.; Liu, K. K.; Shan, C. X.; Dong, L. Biosynthesis of the narrowband deep-red emissive carbon nanodots from eggshells. ACS Sustain. Chem. Eng. 2023, 11, 6535–6544.

[8]

Han, J. F.; Lou, Q.; Ding, Z. Z.; Zheng, G. S.; Ni, Q. C.; Song, R. W.; Liu, K. K.; Zang, J. H.; Dong, L.; Shen, C. L. et al. Chemiluminescent carbon nanodots for dynamic and guided antibacteria. Light: Sci. Appl. 2023, 12, 104.

[9]

Zhao, W. B.; Wang, Y.; Li, F. K.; Guo, R.; Jiao, F. H.; Song, S. Y.; Chang, S. L.; Dong, L.; Liu, K. K.; Shan, C. X. Highly antibacterial and antioxidative carbon nanodots/silk fibroin films for fruit preservation. Nano Lett. 2023, 23, 11755–11762.

[10]

Zhao, W. B.; Liu, K. K.; Wang, Y.; Li, F. K.; Guo, R.; Song, S. Y.; Shan, C. X. Antibacterial carbon dots: Mechanisms, design, and applications. Adv. Healthc. Mater. 2023, 12, 2300324.

[11]

Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.

[12]

Luo, Y. M.; Jiang, Q.; Huang, X. Y.; Dong, J. H.; Zhou, Y. Y.; Huang, F. Y.; Liao, X. L.; Zhuang, J. L.; Hu, C. F.; Zheng, M. T. et al. Na+: The key to ultra-long afterglow lifetimes of CDs in dense SiO2 matrices. J. Mater. Chem. C 2024, 12, 13681–13688.

[13]

Wan, Z. J.; Li, Y. M.; Zhou, Y. Z.; Peng, D. P.; Zhang, X. J.; Zhuang, J. L.; Lei, B. F.; Liu, Y. L.; Hu, C. F. High-efficiency solid-state luminescence from hydrophilic carbon dots with aggregation-induced emission characteristics. Adv. Funct. Mater. 2023, 33, 2207296.

[14]

Wang, B. Y.; Wang, H. W.; Hu, Y. S.; Waterhouse, G. I. N.; Lu, S. Y. Carbon dot based multicolor electroluminescent LEDs with nearly 100% exciton utilization efficiency. Nano Lett. 2023, 23, 8794–8800.

[15]

Zheng, G. S.; Wang, T.; Lou, Q.; Shen, C. L.; Wu, M. Y.; Sun, J. L.; Ji, W. Y.; Zang, J. H.; Liu, K. K.; Dong, L. et al. Localized excitonic electroluminescence from carbon nanodots. J. Phys. Chem. Lett. 2022, 13, 1587–1595.

[16]

Wu, W. T.; Poh, W. C.; Lv, J.; Chen, S. H.; Gao, D. C.; Yu, F.; Wang, H.; Fang, H. J.; Wang, H.; Lee, P. S. Self-powered and light-adaptable stretchable electrochromic display. Adv. Energy Mater. 2023, 13, 2204103.

[17]

Yang, B.; Zhao, Y. Q.; Ali, M. U.; Ji, J. P.; Yan, H.; Zhao, C. B.; Cai, Y. L.; Zhang, C. H.; Meng, H. Asymmetrically enhanced coplanar-electrode electroluminescence for information encryption and ultrahighly stretchable displays. Adv. Mater. 2022, 34, 2201342.

[18]

Sun, J. L.; Li, T. S.; Dong, L.; Hua, Q. L.; Chang, S.; Zhong, H. Z.; Zhang, L. J.; Shan, C. X.; Pan, C. F. Excitation-dependent perovskite/polymer films for ultraviolet visualization. Sci. Bull. 2022, 67, 1755–1762.

[19]

Yoo, J.; Ha, S. B.; Lee, G. H.; Kim, Y.; Choi, M. K. Stretchable high-resolution user-interactive synesthesia displays for visual-acoustic encryption. Adv. Funct. Mater. 2023, 33, 2302473.

[20]

Zhang, C.; Guo, Z. H.; Zheng, X. X.; Zhao, X. J.; Wang, H. L.; Liang, F.; Guan, S.; Wang, Y.; Zhao, Y. B.; Chen, A. H. et al. A contact-sliding-triboelectrification-driven dynamic optical transmittance modulator for self-powered information covering and selective visualization. Adv. Mater. 2020, 32, 1904988.

[21]

Shi, X.; Zuo, Y.; Zhai, P.; Shen, J. H.; Yang, Y. Y. W.; Gao, Z.; Liao, M.; Wu, J. X.; Wang, J. W.; Xu, X. J. et al. Large-area display textiles integrated with functional systems. Nature 2021, 591, 240–245.

[22]

Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

[23]

Xu, Z. W.; Wu, C. X.; Zhu, Y. B.; Ju, S. M.; Ma, F. M.; Guo, T. L.; Li, F. S.; Kim, T. W. Bio-inspired smart electronic-skin based on inorganic perovskite nanoplates for application in photomemories and mechanoreceptors. Nanoscale 2021, 13, 253–260.

[24]

Wang, M.; Luo, Y. F.; Wang, T.; Wan, C. J.; Pan, L.; Pan, S. W.; He, K.; Neo, A.; Chen, X. D. Artificial skin perception. Adv. Mater. 2021, 33, 2003014.

[25]

Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071–1074.

[26]

Lee, S. W.; Baek, S.; Park, S. W.; Koo, M.; Kim, E. H.; Lee, S.; Jin, W.; Kang, H.; Park, C.; Kim, G. et al. 3D motion tracking display enabled by magneto-interactive electroluminescence. Nat. Commun. 2020, 11, 6072.

[27]

Li, Y.; Lin, Q. H.; Sun, T.; Qin, M. Z.; Yue, W. J.; Gao, S. A perceptual and interactive integration strategy toward telemedicine healthcare based on electroluminescent display and triboelectric sensing 3D stacked device. Adv. Funct. Mater. 2024, 34, 2402356.

[28]

Wang, X. C.; Sun, J. L.; Dong, L.; Lv, C. F.; Zhang, K. K.; Shang, Y. Y.; Yang, T.; Wang, J. Z.; Shan, C. X. Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator. Nano Energy 2019, 58, 410–418.

[29]

Chun, F.; Zhang, B. B.; Gao, Y. Y.; Wei, X. H.; Zhang, Q.; Zheng, W. L.; Zhou, J. K.; Guo, Y.; Zhang, X.; Xing, Z. F. et al. Multicolour stretchable perovskite electroluminescent devices for user-interactive displays. Nat. Photonics 2024, 18, 856–863.

[30]

Park, D.; Kim, W.; Park, C.; Choi, J.; Ghorai, A.; Lee, G.; Choi, S.; Moon, W.; Jeong, U. Interactive deformable colored sound display achieved with electrostrictive fluoropolymer and halide perovskite. Small 2024, 20, 2402281.

[31]

Zhu, Y. J.; Hong, A.; Yoon, S.; Park, J.; Yang, H.; Kwak, J.; Yoon, J. Bright bifacial white-light illumination by highly deformable electroluminescent devices based on transparent ionic-hydrogel electrodes and quantum-dot color conversion. Small 2024, 20, 2400704.

[32]

Zuo, Y.; Shi, X.; Zhou, X. F.; Xu, X. J.; Wang, J.; Chen, P. N.; Sun, X. M.; Peng, H. S. Flexible color-tunable electroluminescent devices by designing dielectric-distinguishing double-stacked emissive layers. Adv. Funct. Mater. 2020, 30, 2005200.

[33]

Sun, J. L.; Chang, Y.; Dong, L.; Zhang, K. K.; Hua, Q. L.; Zang, J. H.; Chen, Q. S.; Shang, Y. Y.; Pan, C. F.; Shan, C. X. MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays. Nano Energy 2021, 86, 106077.

[34]

Chang, Y.; Sun, J. L.; Dong, L.; Jiao, F. H.; Chang, S. L.; Wang, Y.; Liao, J.; Shang, Y. Y.; Wu, W. W.; Qi, Y. et al. Self-powered multi-color display based on stretchable self-Healing alternating current electroluminescent devices. Nano Energy 2022, 95, 107061.

[35]

Liao, J.; Sun, J. L.; Dong, F. Y.; Chang, Y.; Chang, S. L.; Mao, X.; Li, N.; Li, X.; Wang, Y.; Shang, Y. Y. et al. Self-powered, flexible, and instantly dynamic multi-color electroluminescence device with bi-emissive layers for optical communication. Nano Energy 2023, 112, 108488.

[36]

Liu, L. Q.; Yang, X. Y.; Zhao, L. L.; Hong, H. X.; Cui, H.; Duan, J. L.; Yang, Q. M.; Tang, Q. W. Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano 2021, 15, 9412–9421.

[37]

Zhang, C. G.; Liu, L.; Zhou, L. L.; Yin, X.; Wei, X. L.; Hu, Y. X.; Liu, Y. B.; Chen, S. Y.; Wang, J.; Wang, Z. L. Self-powered sensor for quantifying ocean surface water waves based on triboelectric nanogenerator. ACS Nano 2020, 14, 7092–7100.

[38]

Zhang, L.; Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Tang, J. F.; Zhang, H. T.; Pan, H.; Zhu, M. H.; Yang, W. Q. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650–1656.

[39]

Han, K.; Luo, J. J.; Feng, Y. W.; Lai, Q. S.; Bai, Y.; Tang, W.; Wang, Z. L. Wind-driven radial-engine-shaped triboelectric nanogenerators for self-powered absorption and degradation of NO x . ACS Nano 2020, 14, 2751–2759.

[40]

Chang, S. L.; Lou, H. Q.; Meng, W. X.; Li, M.; Guo, F. M.; Pang, R.; Xu, J.; Zhang, Y. J.; Shang, Y. Y.; Cao, A. Y. Carbon nanotube/polymer coaxial cables with strong interface for damping composites and stretchable conductors. Adv. Funct. Mater. 2022, 32, 2112231.

[41]

Shang, Y. Y.; Hua, C. F.; Xu, W. J.; Hu, X. Y.; Wang, Y.; Zhou, Y.; Zhang, Y. J.; Li, X. J.; Cao, A. Y. Meter-long spiral carbon nanotube fibers show ultrauniformity and flexibility. Nano Lett. 2016, 16, 1768–1775.

Nano Research
Article number: 94907117
Cite this article:
Zhang W, Lou Q, Sun J, et al. Carbon nanodot-based flexible and self-powered white displays. Nano Research, 2025, 18(2): 94907117. https://doi.org/10.26599/NR.2025.94907117
Topics:

449

Views

112

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 September 2024
Revised: 29 October 2024
Accepted: 07 November 2024
Published: 06 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return