Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Diabetes, a prevalent chronic metabolic disorder, often leads to severe complications. Currently, existing treatment methods may pose life-threatening risks due to poor patient compliance and inaccurate dosing of subcutaneous insulin injections. Hence, a biomimetic red blood cell (RBC) membrane-coated glucose-responsive nanoplatform is developed for controlling insulin release. Functionalizing nanoplatforms with RBC membrane can prolong the half-life of nano-formulation in vivo mediated by the biomimetic immune escape. Simultaneously, the cascade catalytic effect of glucose oxidase (GOx) encapsulated in metal-organic frameworks (MOFs) and hemoglobin (Hb) in the RBC membrane are able to not only facilitate glucose-responsive insulin release, but also eliminate the detrimental by-product hydrogen peroxide (H2O2) resulting from the Hb mediated H2O2 scavenging. Both in vitro and in vivo studies have demonstrated the favorable glucose-responsive performances of this advanced nano-platform with a single intravenous injection maintaining blood glucose balance in Type 1 Diabetes (T1D) mice for an extended duration without the hypoglycemia risk. Therefore, this biomimetic insulin delivery system is poised to function as a strategy for the intravenous insulin administration, offering a promising drug candidate for the self-adaptive long-term T1D treatment.
Wang, Y. N.; Wang, C. H.; Li, K. Y.; Song, X. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics. J. Controlled Release 2021, 330, 618–640.
Wang, C.; Ye, Y. Q.; Sun, W. J.; Yu, J. C.; Wang, J. Q.; Lawrence, D. S.; Buse, J. B.; Gu, Z. Red blood cells for glucose-responsive insulin delivery. Adv. Mater. 2017, 29, 1606617.
Ahlqvist, E.; Van Zuydam, N. R.; Groop, L. C.; McCarthy, M. I. The genetics of diabetic complications. Nat. Rev. Nephrol. 2015, 11, 277–287.
Wu, S.; Zhu, L.; Ni, S.; Zhong, Y.; Qu, K.; Qin, X.; Zhang, K.; Wang, G. X.; Sun, D.; Deng, W. Q. et al. Hyaluronic acid-decorated curcumin-based coordination nanomedicine for enhancing the infected diabetic wound healing. Int. J. Biol. Macromol. 2024, 263, 130249.
Zhang, Y. Q.; Yu, J. C.; Kahkoska, A. R.; Wang, J. Q.; Buse, J. B.; Gu, Z. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 2019, 139, 51–70.
Ren, C. J.; Zhong, D. N.; Qi, Y. C.; Liu, C. Y.; Liu, X. Y.; Chen, S. H.; Yan, S.; Zhou, M. Bioinspired pH-responsive microalgal hydrogels for oral insulin delivery with both hypoglycemic and insulin sensitizing effects. ACS Nano 2023, 17, 14161–14175.
Yu, J. C.; Zhang, Y. Q.; Ye, Y. Q.; DiSanto, R.; Sun, W. J.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Nat. Acad. Sci. USA 2015, 112, 8260–8265.
Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res. 2007, 24, 2198–2206.
Andrade, F.; das Neves, J.; Gener, P.; Schwartz, S. Jr. ; Ferreira, D.; Oliva, M.; Sarmento, B. Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin. Nanomed: Nanotechnol., Biol. Med. 2015, 11, 1621–1631.
Martins, J. P.; Figueiredo, P.; Wang, S. Q.; Espo, E.; Celi, E.; Martins, B.; Kemell, M.; Moslova, K.; Mäkilä, E.; Salonen, J. et al. Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioact. Mater. 2022, 9, 299–315.
Wang, S. Q.; Yang, C. W.; Zhang, W. T.; Zhao, S.; You, J. H.; Cai, R. S.; Wang, H.; Bao, Y. H.; Zhang, Y.; Zhang, J. et al. Glucose-responsive microneedle patch with high insulin loading capacity for prolonged glycemic control in mice and minipigs. Acs Nano 2024, 18, 26056–26065.
Bakh, N. A.; Cortinas, A. B.; Weiss, M. A.; Langer, R. S.; Anderson, D. G.; Gu, Z.; Dutta, S.; Strano, M. S. Glucose-responsive insulin by molecular and physical design. Nat. Chem. 2017, 9, 937–944.
Wang, J. Q.; Ye, Y. Q.; Yu, J. C.; Kahkoska, A. R.; Zhang, X. D.; Wang, C.; Sun, W. J.; Corder, R. D.; Chen, Z. W.; Khan, S. A. et al. Core–shell microneedle gel for self-regulated insulin delivery. ACS Nano 2018, 12, 2466–2473.
Chen, G. S.; Huang, S. M.; Kou, X. X.; Wei, S. B.; Huang, S. Y.; Jiang, S. Q.; Shen, J.; Zhu, F.; Ouyang, G. F. A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 1463–1467.
Zhang, Y. Q.; Wang, J. Q.; Yu, J. C.; Wen, D.; Kahkoska, A. R.; Lu, Y.; Zhang, X. D.; Buse, J. B.; Gu, Z. Bioresponsive microneedles with a sheath structure for H2O2 and pH cascade-triggered insulin delivery. Small 2018, 14, 1704181.
He, M. Y.; Yu, P.; Hu, Y. L.; Zhang, J.; He, M. M.; Nie, C. P.; Chu, X. Erythrocyte-membrane-enveloped biomineralized metal-organic framework nanoparticles enable intravenous glucose-responsive insulin delivery. ACS Appl. Mater. Interfaces 2021, 13, 19648–19659.
Mallakpour, S.; Nikkhoo, E.; Hussain, C. M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev. 2022, 451, 214262.
Lawson, H. D.; Walton, S. P.; Chan, C. Metal-organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
Peng, S.; Bie, B. L.; Sun, Y. Z. S.; Liu, M.; Cong, H. J.; Zhou, W. T.; Xia, Y. C.; Tang, H.; Deng, H. X.; Zhou, X. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 2018, 9, 1293.
Feng, D. W.; Liu, T. F.; Su, J.; Bosch, M.; Wei, Z. W.; Wan, W.; Yuan, D. Q.; Chen, Y. P.; Wang, X.; Wang, K. C. et al. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 2015, 6, 5979.
Wang, R. F.; Qiu, M. S.; Zhang, L.; Sui, M.; Xiao, L.; Yu, Q.; Ye, C. H.; Chen, S. Z.; Zhou, X. Augmenting immunotherapy via bioinspired MOF-based ROS homeostasis disruptor with nanozyme‐cascade reaction. Adv. Mater. 2023, 35, 2306748.
Yu, C. X.; Zhu, W. Y.; He, Z. Z.; Xu, J.; Fang, F. Y.; Gao, Z. A.; Ding, W. L.; Wang, Y. X.; Wang, J.; Wang, J. Q. et al. ATP-triggered drug release system based on ZIF-90 loaded porous poly (lactic-co-glycolic acid) microspheres. Colloids Surf. A: Physicochem Eng Aspects 2021, 615, 126255.
Cheng, R. Y.; Jiang, L. X.; Gao, H.; Liu, Z. H.; Mäkilä, E.; Wang, S. Q.; Saiding, Q.; Xiang, L.; Tang, X. M.; Shi, M. M. et al. A pH-responsive cluster metal-organic framework nanoparticle for enhanced tumor accumulation and antitumor effect. Adv. Mater. 2022, 34, 2203915.
Wang, Y.; Zhang, K.; Qin, X.; Li, T. H.; Qiu, J.; Yin, T. Y.; Huang, J. L.; McGinty, S.; Pontrelli, G.; Ren, J. et al. Biomimetic nanotherapies: Red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adv. Sci. (Weinh) 2019, 6, 1900172.
Zhang, Q. Z.; Dehaini, D.; Zhang, Y.; Zhou, J. L.; Chen, X. Y.; Zhang, L. F.; Fang, R. H.; Gao, W. W.; Zhang, L. F. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotech. 2018, 13, 1182–1190.
Han, H. J.; Bártolo, R.; Li, J. C.; Shahbazi, M. A.; Santos, H. A. Biomimetic platelet membrane-coated nanoparticles for targeted therapy. Eur. J. Pharm. Biopharm. 2022, 172, 1–15.
Fontana, F.; Molinaro, G.; Moroni, S.; Pallozzi, G.; Ferreira, M. P. A.; Tello, R. P.; Elbadri, K.; Torrieri, G.; Correia, A.; Kemell, M. et al. Biomimetic platelet-cloaked nanoparticles for the delivery of anti-inflammatory curcumin in the treatment of atherosclerosis. Adv. Healthcare Mater. 2024, 13, 2302074.
Tan, S. W.; Wu, T. T.; Zhang, D.; Zhang, Z. P. Cell or cell membrane-based drug delivery systems. Theranostics 2015, 5, 863–881.
Sun, X. Q.; Wang, C.; Gao, M.; Hu, A. Y.; Liu, Z. Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy. Adv. Funct. Mater. 2015, 25, 2386–2394.
Castro, F.; Martins, C.; Silveira, M. J.; Moura, R. P.; Pereira, C. L.; Sarmento, B. Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Adv. Drug Delivery Rev. 2021, 170, 312–339.
Rodriguez, P. L.; Harada, T.; Christian, D. A.; Pantano, D. A.; Tsai, R. K.; Discher, D. E. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339, 971–975.
Sun, D.; Chen, J.; Wang, Y.; Ji, H.; Peng, R. Y.; Jin, L. B.; Wu, W. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics 2019, 9, 6885–6900.
Liu, S. Y.; Zhang, Y. W.; Li, M.; Xiong, L.; Zhang, Z. J.; Yang, X. H.; He, X. X.; Wang, K. M.; Liu, J. B.; Mann, S. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat. Chem. 2020, 12, 1165–1173.
Wang, T.; Li, Y. R.; Cornel, E. J.; Li, C.; Du, J. Z. Combined antioxidant-antibiotic treatment for effectively healing infected diabetic wounds based on polymer vesicles. ACS Nano 2021, 15, 9027–9038.
Zhao, H.; Huang, J.; Li, Y.; Lv, X. J.; Zhou, H. T.; Wang, H. R.; Xu, Y. Y.; Wang, C.; Wang, J.; Liu, Z. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials 2020, 258, 120286.
Zhang, C.; Hong, S.; Liu, M. D.; Yu, W. Y.; Zhang, M. K.; Zhang, L.; Zeng, X.; Zhang, X. Z. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J. Controlled Release 2020, 320, 159–167.
511
Views
98
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).