AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Hemoglobin integrated red blood cell membrane-coated metal-organic framework nano-platform for improving the self-adaptive blood glucose management

Shuai Wu1Li Zhu1Sheng Ni1Xiong Zhao1Meng Yan1Yuan Zhong1Karissa Kusuma1Yi Liang1Kaiwen Bao1Kai Qu1,2Xian Qin1,2Kun Zhang1,2Wuquan Deng4 ( )Da Sun3( )Wei Wu1( )
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing 404000, China
Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
Show Author Information

Graphical Abstract

A biomimetic red blood cell membrane-coated glucose-responsive nanoplatform is developed to prolong the half-life during blood circulation, improve the controlled insulin release, and eliminate the detrimental by-product hydrogen peroxide for self-adaptive blood glucose management.

Abstract

Diabetes, a prevalent chronic metabolic disorder, often leads to severe complications. Currently, existing treatment methods may pose life-threatening risks due to poor patient compliance and inaccurate dosing of subcutaneous insulin injections. Hence, a biomimetic red blood cell (RBC) membrane-coated glucose-responsive nanoplatform is developed for controlling insulin release. Functionalizing nanoplatforms with RBC membrane can prolong the half-life of nano-formulation in vivo mediated by the biomimetic immune escape. Simultaneously, the cascade catalytic effect of glucose oxidase (GOx) encapsulated in metal-organic frameworks (MOFs) and hemoglobin (Hb) in the RBC membrane are able to not only facilitate glucose-responsive insulin release, but also eliminate the detrimental by-product hydrogen peroxide (H2O2) resulting from the Hb mediated H2O2 scavenging. Both in vitro and in vivo studies have demonstrated the favorable glucose-responsive performances of this advanced nano-platform with a single intravenous injection maintaining blood glucose balance in Type 1 Diabetes (T1D) mice for an extended duration without the hypoglycemia risk. Therefore, this biomimetic insulin delivery system is poised to function as a strategy for the intravenous insulin administration, offering a promising drug candidate for the self-adaptive long-term T1D treatment.

Electronic Supplementary Material

Download File(s)
7078_ESM.pdf (671.4 KB)

References

[1]

Wang, Y. N.; Wang, C. H.; Li, K. Y.; Song, X. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics. J. Controlled Release 2021, 330, 618–640.

[2]

Wang, C.; Ye, Y. Q.; Sun, W. J.; Yu, J. C.; Wang, J. Q.; Lawrence, D. S.; Buse, J. B.; Gu, Z. Red blood cells for glucose-responsive insulin delivery. Adv. Mater. 2017, 29, 1606617.

[3]

Ahlqvist, E.; Van Zuydam, N. R.; Groop, L. C.; McCarthy, M. I. The genetics of diabetic complications. Nat. Rev. Nephrol. 2015, 11, 277–287.

[4]

Wu, S.; Zhu, L.; Ni, S.; Zhong, Y.; Qu, K.; Qin, X.; Zhang, K.; Wang, G. X.; Sun, D.; Deng, W. Q. et al. Hyaluronic acid-decorated curcumin-based coordination nanomedicine for enhancing the infected diabetic wound healing. Int. J. Biol. Macromol. 2024, 263, 130249.

[5]

Zhang, Y. Q.; Yu, J. C.; Kahkoska, A. R.; Wang, J. Q.; Buse, J. B.; Gu, Z. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 2019, 139, 51–70.

[6]

Ren, C. J.; Zhong, D. N.; Qi, Y. C.; Liu, C. Y.; Liu, X. Y.; Chen, S. H.; Yan, S.; Zhou, M. Bioinspired pH-responsive microalgal hydrogels for oral insulin delivery with both hypoglycemic and insulin sensitizing effects. ACS Nano 2023, 17, 14161–14175.

[7]

Yu, J. C.; Zhang, Y. Q.; Ye, Y. Q.; DiSanto, R.; Sun, W. J.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Nat. Acad. Sci. USA 2015, 112, 8260–8265.

[8]

Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res. 2007, 24, 2198–2206.

[9]

Andrade, F.; das Neves, J.; Gener, P.; Schwartz, S. Jr. ; Ferreira, D.; Oliva, M.; Sarmento, B. Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin. Nanomed: Nanotechnol., Biol. Med. 2015, 11, 1621–1631.

[10]

Martins, J. P.; Figueiredo, P.; Wang, S. Q.; Espo, E.; Celi, E.; Martins, B.; Kemell, M.; Moslova, K.; Mäkilä, E.; Salonen, J. et al. Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioact. Mater. 2022, 9, 299–315.

[11]

Wang, S. Q.; Yang, C. W.; Zhang, W. T.; Zhao, S.; You, J. H.; Cai, R. S.; Wang, H.; Bao, Y. H.; Zhang, Y.; Zhang, J. et al. Glucose-responsive microneedle patch with high insulin loading capacity for prolonged glycemic control in mice and minipigs. Acs Nano 2024, 18, 26056–26065.

[12]
Ji, K. F.; Wei, X. Q.; Kahkoska, A. R.; Zhang, J.; Zhang, Y.; Xu, J. C.; Wei, X. W.; Liu, W.; Wang, Y. F.; Yao, Y. J. et al. An orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of insulin in mice and pigs. Nat. Nanotechnol., in press, https://doi.org/10.1038/s41565-024-01764-5.
[13]

Bakh, N. A.; Cortinas, A. B.; Weiss, M. A.; Langer, R. S.; Anderson, D. G.; Gu, Z.; Dutta, S.; Strano, M. S. Glucose-responsive insulin by molecular and physical design. Nat. Chem. 2017, 9, 937–944.

[14]

Wang, J. Q.; Ye, Y. Q.; Yu, J. C.; Kahkoska, A. R.; Zhang, X. D.; Wang, C.; Sun, W. J.; Corder, R. D.; Chen, Z. W.; Khan, S. A. et al. Core–shell microneedle gel for self-regulated insulin delivery. ACS Nano 2018, 12, 2466–2473.

[15]

Chen, G. S.; Huang, S. M.; Kou, X. X.; Wei, S. B.; Huang, S. Y.; Jiang, S. Q.; Shen, J.; Zhu, F.; Ouyang, G. F. A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 1463–1467.

[16]

Zhang, Y. Q.; Wang, J. Q.; Yu, J. C.; Wen, D.; Kahkoska, A. R.; Lu, Y.; Zhang, X. D.; Buse, J. B.; Gu, Z. Bioresponsive microneedles with a sheath structure for H2O2 and pH cascade-triggered insulin delivery. Small 2018, 14, 1704181.

[17]

He, M. Y.; Yu, P.; Hu, Y. L.; Zhang, J.; He, M. M.; Nie, C. P.; Chu, X. Erythrocyte-membrane-enveloped biomineralized metal-organic framework nanoparticles enable intravenous glucose-responsive insulin delivery. ACS Appl. Mater. Interfaces 2021, 13, 19648–19659.

[18]

Mallakpour, S.; Nikkhoo, E.; Hussain, C. M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev. 2022, 451, 214262.

[19]

Lawson, H. D.; Walton, S. P.; Chan, C. Metal-organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020.

[20]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[21]

Peng, S.; Bie, B. L.; Sun, Y. Z. S.; Liu, M.; Cong, H. J.; Zhou, W. T.; Xia, Y. C.; Tang, H.; Deng, H. X.; Zhou, X. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 2018, 9, 1293.

[22]

Feng, D. W.; Liu, T. F.; Su, J.; Bosch, M.; Wei, Z. W.; Wan, W.; Yuan, D. Q.; Chen, Y. P.; Wang, X.; Wang, K. C. et al. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 2015, 6, 5979.

[23]

Wang, R. F.; Qiu, M. S.; Zhang, L.; Sui, M.; Xiao, L.; Yu, Q.; Ye, C. H.; Chen, S. Z.; Zhou, X. Augmenting immunotherapy via bioinspired MOF-based ROS homeostasis disruptor with nanozyme‐cascade reaction. Adv. Mater. 2023, 35, 2306748.

[24]

Yu, C. X.; Zhu, W. Y.; He, Z. Z.; Xu, J.; Fang, F. Y.; Gao, Z. A.; Ding, W. L.; Wang, Y. X.; Wang, J.; Wang, J. Q. et al. ATP-triggered drug release system based on ZIF-90 loaded porous poly (lactic-co-glycolic acid) microspheres. Colloids Surf. A: Physicochem Eng Aspects 2021, 615, 126255.

[25]

Cheng, R. Y.; Jiang, L. X.; Gao, H.; Liu, Z. H.; Mäkilä, E.; Wang, S. Q.; Saiding, Q.; Xiang, L.; Tang, X. M.; Shi, M. M. et al. A pH-responsive cluster metal-organic framework nanoparticle for enhanced tumor accumulation and antitumor effect. Adv. Mater. 2022, 34, 2203915.

[26]

Wang, Y.; Zhang, K.; Qin, X.; Li, T. H.; Qiu, J.; Yin, T. Y.; Huang, J. L.; McGinty, S.; Pontrelli, G.; Ren, J. et al. Biomimetic nanotherapies: Red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adv. Sci. (Weinh) 2019, 6, 1900172.

[27]

Zhang, Q. Z.; Dehaini, D.; Zhang, Y.; Zhou, J. L.; Chen, X. Y.; Zhang, L. F.; Fang, R. H.; Gao, W. W.; Zhang, L. F. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotech. 2018, 13, 1182–1190.

[28]

Han, H. J.; Bártolo, R.; Li, J. C.; Shahbazi, M. A.; Santos, H. A. Biomimetic platelet membrane-coated nanoparticles for targeted therapy. Eur. J. Pharm. Biopharm. 2022, 172, 1–15.

[29]

Fontana, F.; Molinaro, G.; Moroni, S.; Pallozzi, G.; Ferreira, M. P. A.; Tello, R. P.; Elbadri, K.; Torrieri, G.; Correia, A.; Kemell, M. et al. Biomimetic platelet-cloaked nanoparticles for the delivery of anti-inflammatory curcumin in the treatment of atherosclerosis. Adv. Healthcare Mater. 2024, 13, 2302074.

[30]

Tan, S. W.; Wu, T. T.; Zhang, D.; Zhang, Z. P. Cell or cell membrane-based drug delivery systems. Theranostics 2015, 5, 863–881.

[31]

Sun, X. Q.; Wang, C.; Gao, M.; Hu, A. Y.; Liu, Z. Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy. Adv. Funct. Mater. 2015, 25, 2386–2394.

[32]

Castro, F.; Martins, C.; Silveira, M. J.; Moura, R. P.; Pereira, C. L.; Sarmento, B. Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Adv. Drug Delivery Rev. 2021, 170, 312–339.

[33]

Rodriguez, P. L.; Harada, T.; Christian, D. A.; Pantano, D. A.; Tsai, R. K.; Discher, D. E. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339, 971–975.

[34]

Sun, D.; Chen, J.; Wang, Y.; Ji, H.; Peng, R. Y.; Jin, L. B.; Wu, W. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics 2019, 9, 6885–6900.

[35]

Liu, S. Y.; Zhang, Y. W.; Li, M.; Xiong, L.; Zhang, Z. J.; Yang, X. H.; He, X. X.; Wang, K. M.; Liu, J. B.; Mann, S. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat. Chem. 2020, 12, 1165–1173.

[36]

Wang, T.; Li, Y. R.; Cornel, E. J.; Li, C.; Du, J. Z. Combined antioxidant-antibiotic treatment for effectively healing infected diabetic wounds based on polymer vesicles. ACS Nano 2021, 15, 9027–9038.

[37]

Zhao, H.; Huang, J.; Li, Y.; Lv, X. J.; Zhou, H. T.; Wang, H. R.; Xu, Y. Y.; Wang, C.; Wang, J.; Liu, Z. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials 2020, 258, 120286.

[38]

Zhang, C.; Hong, S.; Liu, M. D.; Yu, W. Y.; Zhang, M. K.; Zhang, L.; Zeng, X.; Zhang, X. Z. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J. Controlled Release 2020, 320, 159–167.

Nano Research
Article number: 94907078
Cite this article:
Wu S, Zhu L, Ni S, et al. Hemoglobin integrated red blood cell membrane-coated metal-organic framework nano-platform for improving the self-adaptive blood glucose management. Nano Research, 2025, 18(1): 94907078. https://doi.org/10.26599/NR.2025.94907078
Topics:

511

Views

98

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 June 2024
Revised: 21 September 2024
Accepted: 17 October 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return