AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (23.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A multicolor electrochromic device with on-demand solar thermal management for smart building envelopes

Xueqing Tang1,2Zishou Hu1Zhen Wang3 ( )Zhenyong Wang2Yaowu Li1,2Shan Cong1,2 ( )Zhigang Zhao1,2 ( )
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230000, China
Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University, Haikou 570228, China
Show Author Information

Graphical Abstract

The multicolor dual-function electrochromic (DFEC) electrodes show a substantial reflectance modulation in the near-infrared (NIR, 780–2500 nm) band, with an average modulation of over 80% and a maximum of ~ 93%. In simulations of practical building envelope scenarios, the DFEC devices achieve a significant temperature difference of ~ 5 °C between the heating (colored) and cooling (bleached) modes, demonstrating their excellent solar thermal management capabilities.

Abstract

Buildings account for over 30% of global energy consumption, about half of which is used for heating, cooling and ventilation to regulate indoor temperatures. With the energy crisis looming, saving energy from thermal regulation in buildings will make a significant contribution to sustainable development. Windows and walls are major enveloping parts of buildings, responsible for regulating light and heat indoors from the sun. However, compared to the well-studied smart windows, research on smart building envelopes is still lacking. Herein, we demonstrate a reflective-type dual-function electrochromic (DFEC) device for building envelopes, capable of producing rich color variations in the visible (VIS) and achieving large average reflectivity modulation of over 80% in the near infrared (NIR). Due to the inherent energy recyclability of EC batteries, the DFEC devices reveal ultra-low energy consumption of 30.7 mWh/m2 and power consumption of 0.4 mW/cm2 in single EC cycle. As a demonstration, the DFEC device exhibits a remarkable performance in solar thermal management with a temperature difference of 5 °C between its colored (heating) and bleached (cooling) states, indicating an extensive potential for application in energy-efficient building envelopes.

Electronic Supplementary Material

Download File(s)
7005_ESM.pdf (3 MB)

References

[1]

Ma, J. W.; Zeng, F. R.; Lin, X. C.; Wang, Y. Q.; Ma, Y. H.; Jia, X. X.; Zhang, J. C.; Liu, B. W.; Wang, Y. Z.; Zhao, H. B. A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 2024, 385, 68–74.

[2]

An, B. L.; Wang, Y. Y.; Huang, Y. Y.; Wang, X. Y.; Liu, Y. Z.; Xun, D. M.; Church, G. M.; Dai, Z. J.; Yi, X.; Tang, T. C. et al. Engineered living materials for sustainability. Chem. Rev. 2023, 123, 2349–2419.

[3]

Lin, K. X.; Chen, S. R.; Zeng, Y. J.; Ho, T. C.; Zhu, Y. H.; Wang, X.; Liu, F. Y.; Huang, B. L.; Chao, C. Y. H.; Wang, Z. K. et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 2023, 382, 691–697.

[4]

Sui, C.; Pu, J. K.; Chen, T. H.; Liang, J. W.; Lai, Y. T.; Rao, Y. F.; Wu, R. H.; Han, Y.; Wang, K. Y.; Li, X. Q. et al. Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 2023, 6, 428–437.

[5]

Leng, M. Y.; Long, Y. A smart way to wrap a building. Nat. Sustain. 2023, 6, 619–620.

[6]

Lin, C. J.; Hur, J.; Chao, C. Y. H.; Liu, G. Z.; Yao, S. H.; Li, W. H.; Huang, B. L. All-weather thermochromic windows for synchronous solar and thermal radiation regulation. Sci. Adv. 2022, 8, eabn7359.

[7]

Zhao, X. P.; Li, T. Y.; Xie, H.; Liu, H.; Wang, L. Z.; Qu, Y. R.; Li, S. C.; Liu, S. F.; Brozena, A. H.; Yu, Z. F. et al. A solution-processed radiative cooling glass. Science 2023, 382, 684–691.

[8]

Wang, S. C.; Jiang, T. Y.; Meng, Y.; Yang, R. G.; Tan, G.; Long, Y. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 2021, 374, 1501–1504.

[9]

Zhou, Y.; Wang, S. C.; Peng, J. Q.; Tan, Y. T.; Li, C. C.; Boey, F. Y. C.; Long, Y. Liquid thermo-responsive smart window derived from hydrogel. Joule 2020, 4, 2458–2474.

[10]

Cao, S.; Zhang, S. L.; Zhang, T. R.; Yao, Q. F.; Lee, J. Y. A visible light–near-infrared dual-band smart window with internal energy storage. Joule 2019, 3, 1152–1162.

[11]

Ao, X. Z.; Li, B. W.; Zhao, B.; Hu, M. K.; Ren, H.; Yang, H. L.; Liu, J.; Cao, J. Y.; Feng, J. S.; Yang, Y. J. et al. Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space. Proc. Natl. Acad. Sci. USA 2022, 119, e2120557119.

[12]

Li, X. Q.; Sun, B. W.; Sui, C.; Nandi, A.; Fang, H. M.; Peng, Y. C.; Tan, G.; Hsu, P. C. Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nat. Commun. 2020, 11, 6101.

[13]

Peng, Y. C.; Fan, L. L.; Jin, W. L.; Ye, Y. S.; Huang, Z. J.; Zhai, S.; Luo, X.; Ma, Y. X.; Tang, J.; Zhou, J. W. et al. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 2022, 5, 339–347.

[14]

Cao, S.; Zhang, S. L.; Zhang, T. R.; Lee, J. Y. Fluoride-assisted synthesis of plasmonic colloidal Ta-doped TiO2 nanocrystals for near-infrared and visible-light selective electrochromic modulation. Chem. Mater. 2018, 30, 4838–4846.

[15]

Zhang, S. L.; Cao, S.; Zhang, T. R.; Fisher, A.; Lee, J. Y. Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 2018, 11, 2884–2892.

[16]

Zhang, S. L.; Cao, S.; Zhang, T. R.; Yao, Q. F.; Fisher, A.; Lee, J. Y. Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance. Mater. Horiz. 2018, 5, 291–297.

[17]

Zhu, Y. N.; Luo, H.; Yang, C. Y.; Qin, B.; Ghosh, P.; Kaur, S.; Shen, W. D.; Qiu, M.; Belov, P.; Li, Q. Color-preserving passive radiative cooling for an actively temperature-regulated enclosure. Light Sci. Appl. 2022, 11, 122.

[18]

Wu, X.; Bai, Z. Y.; Bao, B. W.; Zhang, Q. H.; Jiang, W. Z.; Li, Y. G.; Hou, C. Y.; Li, K. R.; Wang, H. Z. A lithium-salt-free, hydrophobic, solid-state poly(ionic liquid) electrolyte enables rapid assembly of unencapsulated, removable electrochromic “window tint film”. Adv. Funct. Mater. 2023, 34, 2312358.

[19]

Hu, Z. S.; Tang, X. Q.; Chen, X. L.; Huang, C. C.; Xu, W. Y.; Nie, S. H.; Zhao, Z. G.; Wu, X. Z.; Su, W. M.; Cui, Z. Ultra-low resistivity copper mesh as embedded current collector layer for inkjet-printed flexible electrochromic device realizing fast response and uniform coloration. Adv. Mater. Technol. 2023, 8, 2201037.

[20]

Sheng, K.; Xue, B.; Zheng, J. M.; Xu, C. Y. A transparent to opaque electrochromic device using reversible Ag deposition on PProDOT-Me2 with robust stability. Adv. Opt. Mater. 2021, 9, 2002149.

[21]

Wang, Z.; Gong, W. B.; Wang, X. Y.; Chen, Z. G.; Chen, X. L.; Chen, J.; Sun, H. Z.; Song, G.; Cong, S.; Geng, F. X. et al. Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pseudocapacitor transition. ACS Appl. Mater. Interfaces 2020, 12, 33917.

[22]

Wang, J. L.; Sheng, S. Z.; He, Z.; Wang, R.; Pan, Z.; Zhao, H. Y.; Liu, J. W.; Yu, S. H. Self-powered flexible electrochromic smart window. Nano Lett. 2021, 21, 9976–9982.

[23]

Shao, Z. W.; Huang, A. B.; Ming, C.; Bell, J.; Yu, P.; Sun, Y. Y.; Jin, L. M.; Ma, L. Y.; Luo, H. J.; Jin, P. et al. All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electron. 2022, 5, 45–52.

[24]

Wang, Z.; Wang, X. Y.; Cong, S.; Chen, J.; Sun, H. Z.; Chen, Z. G.; Song, G.; Geng, F. X.; Chen, Q.; Zhao, Z. G. Towards full-colour tunability of inorganic electrochromic devices using ultracompact Fabry–Perot nanocavities. Nat. Commun. 2020, 11, 302.

[25]

Wu, Q.; Wang, X. Y.; Sun, P. Y.; Wang, Z.; Chen, J.; Chen, Z. G.; Song, G.; Liu, C.L.; Mu, X. Y.; Cong, S. et al. Electrochromic metamaterials of metal-dielectric stacks for multicolor displays with high color purity. Nano Lett. 2021, 21, 6891–6897.

[26]

Chen, J.; Wang, Z.; Chen, Z. G.; Cong, S.; Zhao, Z. G. Fabry–Perot cavity-type electrochromic supercapacitors with exceptionally versatile color tunability. Nano Lett. 2020, 20, 1915–1922.

[27]

Li, Y. W.; Sun, P. Y.; Chen, J.; Zha, X.; Tang, X. Q.; Chen, Z. W.; Zhang, Y. N.; Cong, S.; Geng, F. X.; Zhao, Z. G. Colorful electrochromic displays with high visual quality based on porous metamaterials. Adv. Mater. 2023, 35, 2300116.

[28]

Tang, X. Q.; Hu, Z. S.; Wang, Z.; Chen, J.; Mu, X. Y.; Song, G.; Sun, P. Y.; Wen, Z. J.; Hao, J. M.; Cong, S. et al. ITO/Cu multilayer electrodes for high-brightness electrochromic displays. eScience 2022, 2, 632–638.

[29]

Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24.

[30]

Zhang, J.; Tang, X. Q.; Wei, J.; Cong, S.; Zhu, S. Q.; Li, Y. W.; Yao, J.; Lyu, W.; Jin, H. H.; Zhao, M. et al. Rainbow-colored carbon nanotubes via rational surface engineering for smart visualized sensors. Adv. Sci. 2023, 10, 2303593.

[31]

Wang, Y. Y.; Wang, S.; Wang, X. J.; Zhang, W. R.; Zheng, W. X.; Zhang, Y. M.; Zhang, S. X. A. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nat. Mater. 2019, 18, 1335–1342.

[32]

Li, K. R.; Shao, Y. L.; Yan, H. P.; Lu, Z.; Griffith, K. J.; Yan, J. H.; Wang, G.; Fan, H. W.; Lu, J. Y.; Huang, W. et al. Lattice-contraction triggered synchronous electrochromic actuator. Nat. Commun. 2018, 9, 4798.

[33]

Li, H. Z.; Firby, C. J.; Elezzabi, A. Y. Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries. Joule 2019, 3, 2268–2278.

[34]

Li, H. Z.; Zhang, W.; Elezzabi, A. Y. Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 2020, 32, 2003574.

[35]

Shan, X. M.; Liu, L.; Wu, Y. S.; Yuan, D. S.; Wang, J.; Zhang, C. J.; Wang, J. Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling. Adv. Sci. 2022, 9, 2201190.

[36]

Zeng, S. N.; Pian, S.; Su, M. Y.; Wang, Z. N.; Wu, M. Q.; Liu, X. H.; Chen, M. Y.; Xiang, Y. Z.; Wu, J. W.; Zhang, M. N. et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021, 373, 692–696.

Nano Research
Article number: 94907005
Cite this article:
Tang X, Hu Z, Wang Z, et al. A multicolor electrochromic device with on-demand solar thermal management for smart building envelopes. Nano Research, 2025, 18(1): 94907005. https://doi.org/10.26599/NR.2025.94907005
Topics:

630

Views

133

Downloads

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 July 2024
Revised: 23 August 2024
Accepted: 23 August 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return