Journal Home > Volume 13 , Issue 2

Ganoderma lucidum, one of the most well-known edible fungi, is believed to be very benef icial for longevity and vitality. A long usage history suggests that G. lucidum has various clinical therapeutic effects. And experimental studies have confirmed that G. lucidum has multiple pharmacological effects, including antitumor, anti-microbial, anti-HIV protease, and antidiabetic activity and so on. With the deepening of research, more than 300 compounds have been isolated from G. lucidum. There is an increasing population of G. lucidum-based products, and its international development is expanding. Currently, G. lucidum has drawn much attention to its chemical composition, therapeutic effect, clinical value, and safety. This paper provides a comprehensive review of these aspects to enhance the global promotion of G. lucidum.


menu
Abstract
Full text
Outline
About this article

Ganoderma lucidum: a comprehensive review of phytochemistry, efficacy, safety and clinical study

Show Author's information Sijia Wua,Siyuan ZhangaBo PengaDechao TanaMingyue WuaJinchao Weia( )Yitao Wanga( )Hua Luoa,b,c( )
Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
College of Pharmacy, Guangxi Medical University, Nanning 530021, China
Guangxi University of Chinese Medicine, Nanning 530001, China

Peer review under responsibility of Tsinghua University Press.

Highlights

● Recent progress in chemical constituents, pharmacology, pre-clinical and clinical studies of Ganoderma lucidum is systematically reviewed.

● Chemical structures, characterization and quality control methods of small molecular and macromolecular substances in Ganoderma lucidum are summarized.

● Pharmacological effect, clinical trials and future perspects of Ganoderma lucidum are discussed.

Abstract

Ganoderma lucidum, one of the most well-known edible fungi, is believed to be very benef icial for longevity and vitality. A long usage history suggests that G. lucidum has various clinical therapeutic effects. And experimental studies have confirmed that G. lucidum has multiple pharmacological effects, including antitumor, anti-microbial, anti-HIV protease, and antidiabetic activity and so on. With the deepening of research, more than 300 compounds have been isolated from G. lucidum. There is an increasing population of G. lucidum-based products, and its international development is expanding. Currently, G. lucidum has drawn much attention to its chemical composition, therapeutic effect, clinical value, and safety. This paper provides a comprehensive review of these aspects to enhance the global promotion of G. lucidum.

Keywords: Safety, Clinical study, Efficacy, Ganoderma lucidum, Phytochemistry

References(352)

[1]

A. González, V. Atienza, A. Montoro, et al., Use of Ganoderma lucidum(Ganodermataceae, Basidiomycota) as radioprotector, Nutrients 12 (2020)1143. https://doi.org/10.3390/nu12041143.

[2]

Chinese Pharmacopoeia Commission, Chinese Pharmacopoeia, China Medical Science Press, 2020.

[3]

J. Simonić, M. Stajic, J. Vukojevic, Ganoderma lucidum - from tradition to modern medicine, Zb. Matice. Srp. Prir. Nauke. 133 (2017) 151-161. https://doi.org/10.2298/ZMSPN1733151C.

[4]

J. Li, J. Zhang, H. Chen, et al., Complete mitochondrial genome of the medicinal mushroom Ganoderma lucidum, PLoS One 8 (2013) e72038. https://doi.org/10.1371/journal.pone.0072038.

[5]

F.Y. Sheng, S.S. Wang, X. Luo, et al., Simultaneous determination of ten nucleosides and bases in Ganoderma by micellar electrokinetic chromatography, Food Sci. Hum. Wellness 11 (2022) 263-268. https://doi.org/10.1016/j.fshw.2021.11.015.

[6]

C.Q. Li, Y.P. Cui, J. Lu, et al., Ionic liquid-based ultrasonic-assisted extraction coupled with HPLC and artificial neural network analysis for Ganoderma lucidum, Molecules 25 (2020) 1309. https://doi.org/10.3390/molecules25061309.

[7]

R. Zhao, Q. Chen, Y.M. He, The effect of Ganoderma lucidum extract on immunological function and identify its anti-tumor immunostimulatory activity based on the biological network, Sci. Rep. 8 (2018) 12680. https://doi.org/10.1038/s41598-018-30881-0.

[8]

Y. Fu, L. Shi, K. Ding, Structure elucidation and anti-tumor activity in vivo of a polysaccharide from spores of Ganoderma lucidum (Fr.) Karst, Int. J. Biol. Macromol. 141 (2019) 693-699. https://doi.org/10.1016/j.ijbiomac.2019.09.046.

[9]

Z.H. Yin, Z.H. Liang, C.Q. Li, et al., Immunomodulatory effects of polysaccharides from edible fungus: a review, Food Sci. Hum. Wellness 10 (2021) 393-400. https://doi.org/10.1016/j.fshw.2021.04.001.

[10]

C.Q. Li, Y.P. Cui, J. Lu, et al., Spectrum-effect relationship of immunologic activity of Ganoderma lucidum by UPLC-MS/MS and component knockout method, Food Sci. Hum. Wellness 10 (2021) 278-288. https://doi.org/10.1016/j.fshw.2021.02.019.

[11]

C. Dai, L. He, B. Ma, et al., Facile nanolization strategy for therapeutic Ganoderma lucidum spore oil to achieve enhanced protection against radiation-induced heart disease, Small 15 (2019) e1902642. https://doi.org/10.1002/smll.201902642.

[12]

C. Wang, X. Liu, C. Lian, et al., Triterpenes and aromatic meroterpenoids with antioxidant activity and neuroprotective effects from Ganoderma lucidum, Molecules 24 (2019) 4353. https://doi.org/10.3390/molecules24234353.

[13]

N.A. El-Zawawy, S.S. Ali, Anti-proteolytic activity of Ganoderma lucidum methanol extract against Pseudomonas aeruginosa, J. Infect. Dev. Ctries. 10 (2016) 1020-1024. https://doi.org/10.3855/jidc.6929.

[14]

B. Ergun, Evaluation of antimicrobial, cytotoxic and genotoxic activities of Ganoderma lucidum (Reishi mushroom), Pak. J. Pharm. Sci. 30 (2017)1991-1995. https://doi.org/10.4172/2155-9600.C1.032.

[15]

H.T. Ma, J.F. Hsieh, S.T. Chen, Anti-diabetic effects of Ganoderma lucidum, Phytochemistry 114 (2015) 109-113. https://doi.org/10.1016/j.phytochem.2015.02.017.

[16]

Z. Yang, F. Wu, Y. He, et al., A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway, Food Funct. 9 (2018)397-406. https://doi.org/10.1039/c7fo01489a.

[17]

T.T. Chu, I.F. Benzie, C.W. Lam, et al., Study of potential cardioprotective effects of Ganoderma lucidum (Lingzhi): results of a controlled human intervention trial, Br. J. Nutr. 107 (2012) 1017-1027. https://doi.org/10.1017/s0007114511003795.

[18]

Y.L. Wu, F. Han, S.S. Luan, et al., Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects, J. Agric. Food Chem. 67 (2019)5147-5158. https://doi.org/10.1021/acs.jafc.9b01195.

[19]

L.R. Wen, Z.L. Sheng, J.P. Wang, et al., Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity, Food Chem. 373 (2022) 131374. https://doi.org/10.1016/j.foodchem.2021.131374.

[20]

B. Zhang, R.W. Zhang, X.Q. Yin, et al., Inhibitory activities of some traditional Chinese herbs against testosterone 5α-reductase and effects of Cacumen platycladi on hair re-growth in testosterone-treated mice, J. Ethnopharmacol. 177 (2016) 1-9. https://doi.org/10.1016/j.jep.2015.11.012.

[21]

B. Lakshmi, T.A. Ajith, N. Jose, et al., Antimutagenic activity of methanolic extract of Ganoderma lucidum and its effect on hepatic damage caused by benzo[a]pyrene, J. Ethnopharmacol. 107 (2006) 297-303. https://doi.org/10.1016/j.jep.2006.03.027.

[22]

Z. Lin, B. Yang, Ganoderma and health: biology, chemistry and industry, Springer Nature, 2019.

DOI
[23]

C.W. Huie, X. Di, Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 812 (2004) 241-257. https://doi.org/10.1016/j.jchromb.2004.08.038.

[24]

C. Liang, D. Tian, Y. Liu, et al., Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: ganoderic acids A, C2, D, F, DM, X and Y, Eur. J. Med. Chem. 174 (2019) 130-141. https://doi.org/10.1016/j.ejmech.2019.04.039.

[25]

C. Zhao, C. Zhang, Z. Xing, et al., Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: a comprehensive review, Int. J. Biol. Macromol. 121 (2019) 1160-1178. https://doi.org/10.1016/j.ijbiomac.2018.10.076.

[26]

L. Gu, Y. Zheng, D. Lian, et al., Production of triterpenoids from Ganoderma lucidum: elicitation strategy and signal transduction, Process Biochem. 69 (2018) 22-32. https://doi.org/10.1016/j.procbio.2018.03.019.

[27]

S. Baby, A.J. Johnson, B. Govindan, Secondary metabolites from Ganoderma, Phytochemistry 114 (2015) 66-101. https://doi.org/10.1016/j.phytochem.2015.03.010.

[28]

Q. Xia, H. Zhang, X. Sun, et al., A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp., Molecules 19 (2014) 17478-17535. https://doi.org/10.3390/molecules191117478.

[29]

S. Fatmawati, K. Shimizu, R. Kondo, Ganoderic acid Df, a new triterpenoid with aldose reductase inhibitory activity from the fruiting body of Ganoderma lucidum, Fitoterapia 81 (2010) 1033-1036. https://doi.org/10.1016/j.fitote.2010.06.025.

[30]

J. Liu, K. Shimizu, A. Tanaka, et al., Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms, Sci. Rep. 2 (2012)905. https://doi.org/10.1038/srep00905.

[31]

B. Chen, J. Tian, J. Zhang, et al., Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase, Fitoterapia 120 (2017) 6-16. https://doi.org/10.1016/j.fitote.2017.05.005.

[32]

S. Fatmawati, R. Kondo, K. Shimizu, Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors, Bioorg. Med. Chem. Lett. 23 (2013) 5900-5903. https://doi.org/10.1016/j.bmcl.2013.08.084.

[33]

C.R. Cheng, Q.X. Yue, Z.Y. Wu, et al., Cytotoxic triterpenoids from Ganoderma lucidum, Phytochemistry 71 (2010) 1579-1585. https://doi.org/10.1016/j.phytochem.2010.06.005.

[34]

U. Grienke, T. Kaserer, B. Kirchweger, et al., Steroid sulfatase inhibiting lanostane triterpenes - structure activity relationship and in silico insights, Bioorg. Chem. 95 (2020) 103495. https://doi.org/10.1016/j.bioorg.2019.103495.

[35]

J. Liu, K. Kurashiki, K. Shimizu, et al., Structure-activity relationship for inhibition of 5alpha-reductase by triterpenoids isolated from Ganoderma lucidum, Bioorg. Med. Chem. 14 (2006) 8654-8660. https://doi.org/10.1016/j.bmc.2006.08.018.

[36]

Q. Wang, F. Wang, Z. Xu, et al., Bioactive mushroom polysaccharides: a review on monosaccharide composition, biosynthesis and regulation, Molecules 22 (2017) 955. https://doi.org/10.3390/molecules22060955.

[37]

J.H. Lu, R.J. He, P.L. Sun, et al., Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review, Int. J. Biol. Macromol. 150 (2020) 765-774. https://doi.org/10.1016/j.ijbiomac.2020.02.035.

[38]

X. Peng, M. Qiu, Meroterpenoids from Ganoderma species: a review of last five years, Nat. Prod. Bioprosp. 8 (2018) 137-149. https://doi.org/10.1007/s13659-018-0164-z.

[39]

I. Lee, B. Ahn, J. Choi, et al., Selective cholinesterase inhibition by lanostane triterpenes from fruiting bodies of Ganoderma lucidum, Bioorg. Med. Chem. Lett. 21 (2011) 6603-6607. https://doi.org/10.1016/j.bmcl.2011.04.042.

[40]

I. Lee, J. Seo, J. Kim, et al., Lanostane triterpenes from the fruiting bodies of Ganoderma lucidum and their inhibitory effects on adipocyte differentiation in 3T3-L1 Cells, J. Nat. Prod. 73 (2010) 172-176. https://doi.org/10.1021/np900578h.

[41]

S. El-Mekkawy, M.R. Meselhy, N. Nakamura, et al., Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum, Phytochemistry 49 (1998) 1651-1657. https://doi.org/10.1016/s0031-9422(98)00254-4.

[42]

T. Kikuchi, S. Kanomi, Y. Murai, et al., Constituents of the fungus Ganoderma lucidum (FR.) KARST. Ⅲ. : structures of ganolucidic acids A and B, new lanostane-type triterpenoids, Chem. Pharm. Bull. 34 (1986)4030-4036. https://doi.org/10.1248/cpb.34.4030.

[43]

T. Kikuchi, S. Matsuda, Y. Murai, et al., Ganoderic acid G and I and ganolucidic acid A and B, new triterpenoids from Ganoderma lucidum, Chem. Pharm. Bull. 33 (1985) 2628-2631. https://doi.org/10.1248/cpb.33.2628.

[44]

T. Kubota, Y. Asaka, I. Miura, et al., Structures of ganoderic acid A and B, two new lanostane type bitter triterpenes from Ganoderma lucidum (FR.)KARST, Helv. Chim. Acta. 65 (1982) 611-619. https://doi.org/10.1002/hlca.19820650221.

[45]

H. Kohda, W. Tokumoto, K. Sakamoto, et al., The biologically active constituents of Ganoderma lucidum (Fr.) Karst. Histamine release-inhibitory triterpenes, Chem. Pharm. Bull. (Tokyo) 33 (1985) 1367-1374. https://doi.org/10.1248/cpb.33.1367.

[46]

T. Kikuchi, S. Kanomi, S. Kadota, et al., Constituents of the fungus Ganoderma lucidum (Fr.) Karst. I structures of ganoderic acids C2, E, I, and K, lucidenic acid F and related compounds, Chem. Pharm. Bull. 34 (1986)3695-3712. https://doi.org/10.1248/cpb.34.3695.

[47]

A. Morigiwa, K. Kitabatake, Y. Fujimoto, et al., Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum, Chem. Pharm. Bull. (Tokyo) 34 (1986) 3025-3028. https://doi.org/10.1248/cpb.34.3025.

[48]

J. Luo, Z. Lin, Structure identification of triterpenes from fruiting bodies of Ganoderma lucidum by NMR spectra and X-ray diffraction analysis, Zhong Cao Yao 33 (2002) 197-200. https://doi.org/10.3321/j.issn:0253-2670.2002.03.002.

[49]

J.J. Gao, B.S. Min, E.M. Ahn, et al., New triterpene aldehydes, lucialdehydes A-C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells, Chem. Pharm. Bull. (Tokyo) 50 (2002) 837-840. https://doi.org/10.1248/cpb.50.837.

[50]

S.H. Guan, M. Yang, X. Liu, et al., Two new lanostanoid triterpenes from the fruit body of Ganoderma lucidum-the major component of SunRecome®, Nat Prod Commun. 1 (2006) 177-181. https://doi.org/10.1177/1934578X0600100301.

[51]

T. Kikuchi, S. Kanomi, Y. Murai, et al., Constituents of the fungus Ganoderma lucidum (FR.) KARST. Ⅱ. : structures of ganoderic acids F, G, and H, lucidenic acids D2 and E2, and related compounds, Chem. Pharm. Bull. 34 (1986) 4018-4029. https://doi.org/10.1248/cpb.34.4018.

[52]

Y. Komoda, H. Nakamura, S. Ishihara, et al., Structures of new terpenoid constituents of Ganoderma lucidum (Fr.) Karst (Polyporaceae), Chem. Pharm. Bull. 33 (1985) 4829-4835. https://doi.org/10.1248/cpb.33.4829.

[53]

S.H. Guan, J.M. Xia, M. Yang, et al., Cytotoxic lanostanoid triterpenes from Ganoderma lucidum, J. Asian Nat. Prod. Res. 10 (2008) 695-700. https://doi.org/10.1080/10286020802016297.

[54]

T. Kikuchi, S. Matsuda, S. Kadota, et al., Ganoderic acid D, E, F, and H and lucidenic acid D, E, and F, new triterpenoids from Ganoderma lucidum, Chem. Pharm. Bull. 33 (1985) 2624-2627. https://doi.org/10.1248/cpb.33.2624.

[55]

M. Hirotani, T. Furuya, Ganoderic acid derivatives, highly oxygenated lanostane-type triterpenoids, from Ganoderma lucidum, Phytochemistry 25 (1986) 1189-1193. https://doi.org/10.1016/S0031-9422(00)81578-2.

[56]

C.F. Wang, J.Q. Liu, Y.X. Yan, et al., Three new triterpenoids containing four-membered ring from the fruiting body of Ganoderma sinense, Org. Lett. 12 (2010) 1656-1659. https://doi.org/10.1021/ol100062b.

[57]

Y.Y. Li, Z.Y. Mi, Y. Tang, et al., Lanostanoids isolated from Ganoderma lucidum mycelium cultured by submerged fermentation, Helv. Chim. Acta. 92 (2009) 1586-1593. https://doi.org/10.1002/hlca.200900028.

[58]

D.Z. Liu, Y.Q. Zhu, X.F. Li, et al., New triterpenoids from the fruiting bodies of Ganoderma lucidum and their bioactivities, Chem. Biodivers. 11 (2014) 982-986. https://doi.org/10.1002/cbdv.201400004.

[59]

Y. Shao, L. Qiao, L. Wu, et al., Structure identification and anti-cancer pharmacological prediction of triterpenes from Ganoderma lucidum, Molecules 21 (2016) 678. https://doi.org/10.3390/molecules21050678.

[60]

T. Nishitoba, H. Sato, S. Sakamura, Triterpenoids from the fungus Ganoderma lucidum, Phytochemistry 26 (1987) 1777-1784. https://doi.org/10.1016/S0031-9422(00)82287-6.

[61]

J. Ma, Q. Ye, Y. Hua, et al., New lanostanoids from the mushroom Ganoderma lucidum, J. Nat. Prod. 65 (2002) 72-75. https://doi.org/10.1021/np010385e.

[62]
R.Y. Chen, D.Q. Yu, Studies on the triterpenoid constituents of the spores from Ganoderma lucidum Karst, J. Chin. Pharm. Sci. 2 (1993) 91-96. https://doi.org/CNKI:SUN:XYGZ.0.1993-02-000.
[63]

C. Li, Y. Li, H.H. Sun, New ganoderic acids, bioactive triterpenoid metabolites from the mushroom Ganoderma lucidum, Nat. Prod. Res. 20 (2006) 985-991. https://doi.org/10.1080/14786410600921466.

[64]

J. Luo, Y.Y. Zhao, Z.B. Li, A new lanostane-type triterpene from the fruiting bodies of Ganoderma lucidum, J. Asian Nat. Prod. Res. 4 (2002) 129-134. https://doi.org/10.1080/10286020290027416.

[65]

B.S. Min, J.J. Gao, N. Nakamura, et al., Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth-A and LLC tumor cells, Chem. Pharm. Bull (Tokyo) 48 (2000) 1026-1033. https://doi.org/10.1248/cpb.48.1026.

[66]

B.S. Min, N. Nakamura, H. Miyashiro, et al., Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease, Chem. Pharm. Bull. (Tokyo) 46 (1998) 1607-1612. https://doi.org/10.1248/cpb.46.1607.

[67]

T. Nishitoba, K. Oda, H. Sato, et al., Novel triterpenoids from the fungus Ganoderma lucidum, Agric. Biol. Chem. 52 (1988) 367-372. https://doi.org/10.1080/00021369.1988.10868655.

[68]

T. Nishitoba, H. Sato, K. Oda, et al., Novel triterpenoids and a steroid from the fungus Ganoderma lucidum, Agric. Biol. Chem. 52 (1988) 211-216. https://doi.org/10.1080/00021369.1988.10868604.

[69]

T. Nishitoba, H. Sato, S. Shirasu, et al., Novel triterpenoids from the mycelial mat at the previous stage of fruiting of Ganoderma lucidum, Agric. Biol. Chem. 51 (1987) 619-622. https://doi.org/10.1080/00021369.1987.10868026.

[70]

T. Nishitoba, H. Sato, S. Sakamura, Novel mycelial components, ganoderic acid Mg, Mh, Mi, Mj and Mk, from the fungus Ganoderma lucidum, Agric. Biol. Chem. 51 (1987) 1149-1153. https://doi.org/10.1080/00021369.1987.10868141.

[71]

A.G. Gonzalez, F. Leon, A. Rivera, et al., Lanostanoid triterpenes from Ganoderma lucidum, J. Nat. Prod. 62 (1999) 1700-1701. https://doi.org/10.1021/np990295y.

[72]

H. Cai, F.S. Wang, J.S. Yang, et al., Studies on the triterpenoid constituents from the fruiting body of Ganoderma lucidum (FR) Karst, Chin. J. Vet. Sci. 17 (1997) 511-513. https://doi.org/10.16303/j.cnki.1005-4545.1997.05.030.

[73]

B.J. Ma, Y. Zhou, Y. Ruan, et al., Lanostane-type triterpenes from the sporoderm-broken spores of Ganoderma lucidum, J. Antibiot. 65 (2012)165-167. https://doi.org/10.1038/ja.2011.135.

[74]

Y.B. Li, R.M. Liu, J.J. Zhong, A new ganoderic acid from Ganoderma lucidum mycelia and its stability, Fitoterapia 84 (2013) 115-122. https://doi.org/10.1016/j.fitote.2012.11.008.

[75]

M. Hirotani, I. Asaka, C. Ino, et al., Ganoderic acid derivatives and ergosta-4,7,22-triene-3,6-dione from Ganoderma lucidum, Phytochemistry 26 (1987)2797-2803. https://doi.org/10.1016/s0031-9422(00)83593-1.

[76]

J. Toth, B. Luu, J. Beck, et al., Chemistry and biochemistry of oriental drugs. Part Ⅸ. Cytotoxic triterpenes from Ganoderma lucidum (Polyporaceae): structures of ganoderic acids U-Z, J. Chem. Res. (1983) 299-299.

[77]

J.L. Wang, Y.B. Li, R.M. Liu, et al., A new ganoderic acid from Ganoderma lucidum mycelia, J. Asian Nat. Prod. Res. 12 (2010) 727-730. https://doi.org/10.1080/10286020.2010.493506.

[78]

H.H. Ko, C.F. Hung, J.P. Wang, et al., Antiinflammatory triterpenoids and steroids from Ganoderma lucidum and G. tsugae, Phytochemistry 69 (2008)234-239. https://doi.org/10.1016/j.phytochem.2007.06.008.

[79]

M. Yang, X. Wang, S. Guan, et al., Analysis of triterpenoids in Ganoderma lucidum using liquid chromatography coupled with electrospray ionization mass spectrometry, J. Am. Soc. Mass Spectrom. 18 (2007) 927-939. https://doi.org/10.1016/j.jasms.2007.01.012.

[80]

X.R. Zhao, B.J. Zhang, S. Deng, et al., Isolation and identification of oxygenated lanostane-type triterpenoids from the fungus Ganoderma lucidum, Phytochem. Lett. 16 (2016) 87-91. https://doi.org/10.1016/j.phytol.2016.03.007.

[81]

H.G. Su, X.R. Peng, Q.Q. Shi, et al., Lanostane triterpenoids with antiinflammatory activities from Ganoderma lucidum, Phytochemistry 173 (2020) 112256. https://doi.org/10.1016/j.phytochem.2019.112256.

[82]

M. Chen, M. Zhang, S. Sun, et al., A new triterpene from the fruiting bodies of Ganoderma lucidum, Yao Xue Xue Bao 44 (2009) 768-770. https://doi.org/10.3321/j.issn:0513-4870.2009.07.015.

[83]

S. Chen, X. Li, T. Yong, et al., Cytotoxic lanostane-type triterpenoids from the fruiting bodies of Ganoderma lucidum and their structure-activity relationships, Oncotarget 8 (2017) 10071-10084. https://doi.org/10.18632/oncotarget.14336.

[84]

S.H. Guan, M. Yang, X.M. Wang, et al., Structure elucidation and complete NMR spectral assignments of three new lanostanoid triterpenes with unprecedented Delta (16,17) double bond from Ganoderma lucidum, Magn. Reson. Chem. 45 (2007) 789-791. https://doi.org/10.1002/mrc.2046.

[85]

R.X. Hao, J.S. Zhang, Q. Tang, et al., Isolation, purification and identification of two new triterpenoid constituents from the fruiting bodies of Ganoderma lucidum, Mycosystema 25 (2006) 599-602. https://doi.org/10.1016/S1872-2075(06)60070-8.

[86]

T. Akihisa, M. Tagata, M. Ukiya, et al., Oxygenated lanostane-type triterpenoids from the fungus Ganoderma lucidum, J. Nat. Prod. 68 (2005)559-563. https://doi.org/10.1021/np040230h.

[87]

C.J. Weng, C.F. Chau, K.D. Chen, et al., The anti-invasive effect of lucidenic acids isolated from a new Ganoderma lucidum strain, Mol. Nutr. Food Res. 51 (2007) 1472-1477. https://doi.org/10.1002/mnfr.200700155.

[88]

P. Li, Y.P. Deng, X.X. Wei, et al., Triterpenoids from Ganoderma lucidum and their cytotoxic activities, Nat. Prod. Res. 27 (2013) 17-22. https://doi.org/10.1080/14786419.2011.652961.

[89]

T. Nishitoba, H. Sato, T. Kasai, et al., New bitter C27 and C30 terpenoids from the fungus Ganoderma lucidum (Reishi), Agric. Biol. Chem. 49 (1985)1793-1798. https://doi.org/10.1080/00021369.1985.10866955.

[90]

K. Iwatsuki, T. Akihisa, H. Tokuda, et al., Lucidenic acids P and Q, methyl lucidenate P, and other triterpenoids from the fungus Ganoderma lucidum and their inhibitory effects on Epstein-Barr virus activation, J. Nat. Prod. 66 (2003) 1582-1585. https://doi.org/10.1021/np0302293.

[91]

I. Lee, H. Kim, U. Youn, et al., Effect of lanostane triterpenes from the fruiting bodies of Ganoderma lucidum on adipocyte differentiation in 3T3-L1 cells, Planta. Med. 76 (2010) 1558-1563. https://doi.org/10.1055/s-0030-1249827.

[92]

N.T. Tung, T.D. Cuong, T.M. Hung, et al., Inhibitory effect on NO production of triterpenes from the fruiting bodies of Ganoderma lucidum, Bioorg. Med. Chem. Lett. 23 (2013) 1428-1432. https://doi.org/10.1016/j.bmcl.2012.12.066.

[93]

T. Nishitoba, S. Sato, S. Sakamura, New terpenoids from Ganoderma lucidum and their bitterness, Agric. Biol. Chem. 49 (1985) 1547-1549. https://doi.org/10.1080/00021369.1985.10866944.

[94]

T. Nishitoba, H. Sato, S. Sakamura, New terpenoids, ganolucidic acid D, ganoderic acid L, lucidone C and lucidenic acid G, from the fungus Ganoderma lucidum, Agric. Biol. Chem. 50 (1986) 809-811. https://doi.org/10.1080/00021369.1986.10867474.

[95]

X.Q. Zhang, F.C.F. Ip, D.M. Zhang, et al., Triterpenoids with neurotrophic activity from Ganoderma lucidum, Nat. Prod. Res. 25 (2011) 1607-1613. https://doi.org/10.1080/14786419.2010.496367.

[96]

C. Li, J. Yin, F. Guo, et al., Ganoderic acid Sz, a new lanostanoid from the mushroom Ganoderma lucidum, Nat. Prod. Res. 19 (2005) 461-465. https://doi.org/10.1080/14786410412331272077.

[97]

M. Arisawa, A. Fujita, M. Saga, et al., Three new lanostanoids from Ganoderma lucidum, J. Nat. Prod. 49 (1986) 621-625. https://doi.org/10.1021/np50046a010.

[98]

H. Sato, T. Nishitoba, S. Shirasu, et al., Ganoderiol A and B, new triterpenoids from the fungus Ganoderma lucidum (Reishi), Agric. Biol. Chem. 50 (1986) 2887-2890. https://doi.org/10.1080/00021369.1986.10867818.

[99]

M.S. Shiao, L.J. Lin, S.F. Yeh, et al., Two new triterpenes of the fungus Ganoderma lucidum, J. Nat. Prod. 50 (1987) 886-890. https://doi.org/10.1021/np50053a019.

[100]

M. Hirotani, C. Ino, T. Furuya, et al., Ganoderic acids T, S and R, new triterpenoids from the cultured mycelia of Ganoderma lucidum, Chem. Pharm. Bull. 34 (1986) 2282-2285. https://doi.org/10.1248/cpb.34.2282.

[101]

M.S. Shiao, L.J. Lin, S.F. Yeh, Triterpenes from Ganoderma lucidum, Phytochemistry 27 (1988) 2911-2914. https://doi.org/10.1016/0031-9422(88)80687-3.

[102]

L.J. Lin, M.S. Shiao, S.F. Yeh, Triterpenes from Ganoderma lucidum, Phytochemistry 27 (1988) 2269-2271. https://doi.org/10.1016/0031-9422(88)80140-7.

[103]

M. Hirotani, I. Asaka, C. Ino, et al., Studies on the metabolites of higher fungi. 7. ganoderic acid-derivatives and ergosta-4,7,22-triene-3,6-dione from Ganoderma-lucidum, Phytochemistry 26 (1987) 2797-2803. https://doi.org/10.1016/S0031-9422(00)83593-1.

[104]

C. Gerhäuser, W.D. Zhang, N. Ho-Chong-Line, et al., New lanostanoids from Ganoderma lucidum that induce NAD (P) H: qui-none oxidoreductase in cultured Hepalclc7 murine hepatoma cells, Planta Med. 66 (2000) 681-684. https://doi.org/10.1055/s-2000-8647.

[105]

M.S. Shiao, L.J. Lin, S.F. Yeh, Triterpenes in Ganoderma lucidum, Phytochemistry 27 (1988) 873-875. https://doi.org/10.1016/0031-9422(88)84110-4.

[106]

J. Toth, B. Luu, G. Ourisson, Ganoderic acid T and Z: cytotoxic triterpenes from G. lucidum, Tetrahedron. Lett. 24 (1983) 1081-1084. https://doi.org/10.1016/S0040-4039(00)81610-X.

[107]

M. Adams, M. Christen, I. Plitzko, et al., Antiplasmodial lanostanes from the Ganoderma lucidum mushroom, J. Nat. Prod. 73 (2010) 897-900. https://doi.org/10.1021/np100031c.

[108]

L.J. Lin, M.S. Shiao, S.F. Yeh, Seven new triterpenes from Ganoderma lucidum, J. Nat. Prod. 51 (1988) 918-924. https://doi.org/10.1021/np50059a017.

[109]

A. Fujita, M. Arisawa, M. Saga, et al., Two new lanostanoids from Ganoderma lucidum, J. Nat. Prod. 49 (1986) 1122-1125. https://doi.org/10.1021/np50048a029.

[110]

R.Y. Chen, D.Q. Yu, Application of 2d NMR techniques in the structure determination of ganosporelactone A and B, Yao Xue Xue Bao 26 (1991)430-436.

[111]

M. Hirotani, C. Ino, T. Furuya, Comparative study on the strain-specific triterpenoid components of Ganoderma lucidum, Phytochemistry 33 (1993)379-382. https://doi.org/10.1016/0031-9422(93)85523-T.

[112]

F. Wang, H. Cai, J. Yang, et al., Triterpenoids from the fruiting body of Ganoderma lucidum, J. Chin. Pharm. Sci. 4 (1997) 20-25.

[113]

M. Hirotani, T. Furuya, M. Shiro, A ganoderic acid derivative, a highly oxygenated lanostane-type triterpenoid from Ganoderma lucidum, Phytochemistry 24 (1985) 2055-2061. https://doi.org/10.1016/S0031-9422(00)83121-0.

[114]

Y. Mizushina, N. Takahashi, L. Hanashima, Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete, Bioorg. Med. Chem. 7 (1999) 2047-2052. https://doi.org/10.1016/S0968-0896(99)00121-2.

[115]

S. Joseph, K.K. Janardhanan, V. George, et al., A new epoxidic ganoderic acid and other phytoconstituents from Ganoderma lucidum, Phytochem. Lett. 4 (2011) 386-388. https://doi.org/10.1016/j.phytol.2011.08.011.

[116]

T. Nishitoba, H. Sato, S. Sakamura, New terpenoids, ganoderic acid J and ganolucidic acid C, from the fungus Ganoderma lucidum, Agric. Biol. Chem. 49 (1985) 3637-3638. https://doi.org/10.1080/00021369.1985.10867324.

[117]

X.Q. Che, S.P. Li, J. Zhao, Ganoderma triterpenoids from aqueous extract of Ganoderma lucidum, Zhongguo Zhong Yao Za Zhi 42 (2017) 1908-1915. https://doi.org/10.19540/j.cnki.cjcmm.20170412.001.

[118]

M.H. Koo, H.J. Chae, J.H. Lee, et al., Antiinflammatory lanostane triterpenoids from Ganoderma lucidum, Nat. Prod. Res. 35 (2019) 4295-4302. https://doi.org/10.1080/14786419.2019.1705815.

[119]

C. Murata, Q.T. Tran, S. Onda, et al., Extraction and isolation of ganoderic acid sigma from Ganoderma lucidum, Tetrahedron Lett. 57 (2016) 5368-5371. https://doi.org/10.1016/j.tetlet.2016.10.072.

[120]

I.C. Ferreira, S.A. Heleno, F.S. Reis, et al., Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities, Phytochemistry 114 (2015) 38-55. https://doi.org/10.1016/j.phytochem.2014.10.011.

[121]

M. Tomoda, R. Gonda, Y. Kasahara, et al., Glycan structures of ganoderans B and C, hypoglycemic glycans of Ganoderma lucidum fruit bodies, Phytochemistry 25 (1986) 2817-2820. https://doi.org/10.1016/S0031-9422(00)83748-6.

[122]

Q. Chen, R. Li, Y. He, Studies on anti-aging polysaccharides GLB GLC of Ganoderma lucidum Δ, Beijing Yike Daxue Xuebao 25 (1993) 303-305. https://doi.org/10.1007/BF02005919.

[123]

T. Li, Y. He, R. Li, The study of polysaccharides of Ganoderma lucidum from Tai Mountain, China J. Chinese Matera. Medica. 22 (1997) 487-489. https://doi.org/10.3321/j.issn:1001-5302.1997.08.016.

[124]

X.F. Bao, X.S. Wang, Q. Dong, et al., Structural features of immunologically active polysaccharides from Ganoderma lucidum, Phytochemistry 59 (2002)175-181. https://doi.org/10.1016/s0031-9422(01)00450-2.

[125]

X.F. Bao, Y. Zhen, L. Ruan, et al., Purification, characterization, and modification of T lymphocyte-stimulating polysaccharide from spores of Ganoderma lucidum, Chem. Pharm. Bull. (Tokyo) 50 (2002) 623-629. https://doi.org/10.1248/cpb.50.623.

[126]

J. Zhang, Q. Tang, M. Zimmerman-Kordmann, et al., Activation of B lymphocytes by GLIS, a bioactive proteoglycan from Ganoderma lucidum, Life Sci. 71 (2002) 623-638. https://doi.org/10.1016/s0024-3205(02)01690-9.

[127]

S. Lin, S. Wang, Z. Lin, et al., Isolation and identification of active components of Ganoderma lucidum cultivated with grass and wood log I. extraction, purification and characterization of glycopeptide, Zhong Cao Yao 34 (2003) 872-874. https://doi.org/10.3321/j.issn:0253-2670.2003.10.003.

[128]

S.Z. Wang, K. Ding, S.Q. Lin, et al., Isolation, purification and structural analysis of GL-PP-3A, an active polysaccharide peptide from Ganoderma lucidum, Yao Xue Xue Bao 42 (2007) 1058-1061. https://doi.org/10.3321/j.issn:0513-4870.2007.10.010.

[129]

D. Shang, J. Zhang, L. Wen, et al., Preparation, characterization, and antiproliferative activities of the Se-containing polysaccharide SeGLP-2B-1 from Se-enriched Ganoderma lucidum, J. Agric. Food Chem. 57 (2009)7737-7742. https://doi.org/10.1021/jf9019344.

[130]

J. Wang, L. Zhang, Structure and chain conformation of five water-soluble derivatives of a beta-D-glucan isolated from Ganoderma lucidum, Carbohydr. Res. 344 (2009) 105-112. https://doi.org/10.1016/j.carres.2008.09.024.

[131]

Y. Liu, J. Zhang, Q. Tang, et al., Physicochemical characterization of a high molecular weight bioactive β-D-glucan from the fruiting bodies of Ganoderma lucidum, Carbohydr. Polym. 101 (2014) 968-974. https://doi.org/10.1016/j.carbpol.2013.10.024.

[132]

J. Li, F. Gu, C. Cai, et al., Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum, Int. J. Biol. Macromol. 143 (2020) 806-813. https://doi.org/10.1016/j.ijbiomac.2019.09.141.

[133]

R.Y. Chen, Y.H. Wang, D.Q. Yu, Studies on the chemical constituents of the spores from Ganoderma lucidum, J. Integr. Plant Biol. 33 (1991) 65-68.

[134]

H.W. Seo, T.M. Hung, M. Na, et al., Steroids and triterpenes from the fruit bodies of Ganoderma lucidum and their anti-complement activity, Arch. Pharm. Res. 32 (2009) 1573-1579. https://doi.org/10.1007/s12272-009-2109-x.

[135]

C.R. Zhang, S.P. Yang, J.M. Yue, Sterols and triterpenoids from the spores of Ganoderma lucidum, Nat. Prod. Res. 22 (2008) 1137-1142. https://doi.org/10.1080/14786410601129721.

[136]

Y. Weng, L. Xiang, A. Matsuura, et al., Ganodermasides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene, Bioorg. Med. Chem. 18 (2010) 999-1002. https://doi.org/10.1016/j.bmc.2009.12.070.

[137]

Y. Weng, J. Lu, L. Xiang, et al., Ganodermasides C and D, two new antiaging ergosterols from spores of the medicinal mushroom Ganoderma lucidum, Biosci. Biotechnol. Biochem. 75 (2011) 800-803. https://doi.org/10.1271/bbb.100918.

[138]

C.N. Lin, W.P. Tome, S.J. Won, Novel cytotoxic principles of Formosan Ganoderma lucidum, J. Nat. Prod. 54 (1991) 998-1002. https://doi.org/10.1021/np50076a012.

[139]

Y.K. Chen, Y.H. Kuo, B.H. Chiang, et al., Cytotoxic activities of 9,11-dehydroergosterol peroxide and ergosterol peroxide from the fermentation mycelia of Ganoderma lucidum cultivated in the medium containing leguminous plants on Hep 3B cells, J. Agric. Food Chem. 57 (2009) 5713-5719. https://doi.org/10.1021/jf900581h.

[140]

F.C. Ziegenbein, H.P. Hanssen, W.A. König, Secondary metabolites from Ganoderma lucidum and Spongiporus leucomallellus, Phytochemistry 67 (2006) 202-211. https://doi.org/10.1016/j.phytochem.2005.10.025.

[141]

R.A. Mothana, R. Jansen, W.D. Jülich, et al., Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi, J. Nat. Prod. 63 (2000) 416-418. https://doi.org/10.1021/np990381y.

[142]

Q. Luo, X.L. Wang, L. Di, et al., Isolation and identification of renoprotective substances from the mushroom Ganoderma lucidum, Tetrahedron. 71 (2015) 840-845. https://doi.org/10.1016/j.tet.2014.12.052.

[143]

X.F. Wang, Y.M. Yan, X.L. Wang, et al., Two new compounds from Ganoderma lucidum, J. Asian Nat. Prod. Res. 17 (2015) 329-332. https://doi.org/10.1080/10286020.2014.960858.

[144]

F.J. Zhou, X.L. Wang, S.M. Wang, et al., A new meroterpenoid from Ganoderma lucidum, Nat. Prod. Res. Dev. 27 (2015) 22-25. https://doi.org/10.16333/j.1001-6880.2015.01.004.

[145]

Y.M. Yan, J. Ai, L.L. Zhou, et al., Lingzhiols, unprecedented rotary doorshaped meroterpenoids as potent and selective inhibitors of p-Smad3 from Ganoderma lucidum, Org. Lett. 15 (2013) 5488-5491. https://doi.org/10.1021/ol4026364.

[146]

Z.Z. Zhao, H.P. Chen, T. Feng, et al., Lucidimine A-D, four new alkaloids from the fruiting bodies of Ganoderma lucidum, J. Asian Nat. Prod. Res. 17 (2015) 1160-1165. https://doi.org/10.1080/10286020.2015.1119128.

[147]

A. Shimizu, T. Yano, Y. Saito, et al., Isolation of an inhibitor of platelet aggregation from a fungus, Ganoderma lucidum, Chem. Pharm. Bull. 33 (1985) 3012-3015. https://doi.org/10.1248/cpb.33.3012.

[148]

Y. Mizushina, L. Hanashima, T. Yamaguchi, et al., A mushroom fruiting body-inducing substance inhibits activities of replicative DNA polymerases, Biochem. Biophys. Res. Commun. 249 (1998) 17-22. https://doi.org/10.1006/bbrc.1998.9091.

[149]

Y. Jiao, T. Xie, L.H. Zou, et al., Lanostane triterpenoids from Ganoderma curtisii and their NO production inhibitory activities of LPS-induced microglia, Bioorg. Med. Chem. Lett. 26 (2016) 3556-3561. https://doi.org/10.1016/j.bmcl.2016.06.023.

[150]

S. Joseph, S. Baby, V. George, et al., Antioxidative and antiinflammatory activities of the chloroform extract of Ganoderma lucidum found in South India, Sci. Pharm. 77 (2009) 111-121. https://doi.org/10.3797/scipharm.0808-17.

[151]

J.G. Wu, Y.J. Kan, Y.B. Wu, et al., Hepatoprotective effect of Ganoderma triterpenoids against oxidative damage induced by tert-butyl hydroperoxide in human hepatic HepG2 cells, Pharm. Biol. 54 (2016) 919-929. https://doi.org/10.3109/13880209.2015.1091481.

[152]

L. Li, H.J. Guo, L.Y. Zhu, et al., A supercritical-CO2 extract of Ganoderma lucidum spores inhibits cholangiocarcinoma cell migration by reversing the epithelial-mesenchymal transition, Phytomedicine 23 (2016) 491-497. https://doi.org/10.1016/j.phymed.2016.02.019.

[153]

X.R. Zhao, X.K. Huo, P.P. Dong, et al., Inhibitory effects of highly oxygenated lanostane derivatives from the fungus Ganoderma lucidum on P-glycoprotein and α-glucosidase, J. Nat. Prod. 78 (2015) 1868-1876. https://doi.org/10.1021/acs.jnatprod.5b00132.

[154]

D. Kang, M. Mutakin, J. Levita, Computational study of triterpenoids of Ganoderma lucidum with aspartic protease enzymes for discovering HIV-1 and plasmepsin inhibitors, Int. J. Chem. 7 (2015) 62. https://doi.org/10.5539/ijc.v7n1p62.

[155]

A. Berger, D. Rein, E. Kratky, et al., Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs, Lipids Health Dis. 3 (2004) 2. https://doi.org/10.1186/1476-511x-3-2.

[156]

Y. Kabir, S. Kimura, T. Tamura, Dietary effect of Ganoderma lucidum mushroom on blood pressure and lipid levels in spontaneously hypertensive rats (SHR), J. Nutr. Sci. Vitaminol (Tokyo) 34 (1988) 433-438. https://doi.org/10.3177/jnsv.34.433.

[157]

J.L. Gao, K.S. Leung, Y.T. Wang, et al., Qualitative and quantitative analyses of nucleosides and nucleobases in Ganoderma spp. by HPLC-DADMS, J. Pharm. Biomed. Anal. 44 (2007) 807-811. https://doi.org/10.1016/j.jpba.2007.03.012.

[158]

T.H. Chen, M.F. Wang, Y.F. Liang, et al., A nucleoside-nucleotide mixture may reduce memory deterioration in old senescence-accelerated mice, J. Nutr. 130 (2000) 3085-3089. https://doi.org/10.1093/jn/130.12.3085.

[159]

Y. Chen, S.B. Zhu, M.Y. Xie, et al., Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods, Anal. Chim. Acta. 623 (2008) 146-156. https://doi.org/10.1016/j.aca.2008.06.018.

[160]

D.T. Ha, L.T. Loan, T.M. Hung, et al., An improved HPLC-DAD method for quantitative comparisons of triterpenes in Ganoderma lucidum and its five related species originating from Vietnam, Molecules 20 (2015) 1059-1077. https://doi.org/10.3390/molecules20011059.

[161]

M.S. Khan, R. Parveen, K. Mishra, et al., Determination of nucleosides in Cordyceps sinensis and Ganoderma lucidum by high performance liquid chromatography method, J. Pharm. Bioallied Sci. 7 (2015) 264-266. https://doi.org/10.4103/0975-7406.168022.

[162]

C. Zhang, D. Fu, G. Chen, et al., Comparative and chemometric analysis of correlations between the chemical fingerprints and anti-proliferative activities of ganoderic acids from three Ganoderma species, Phytochem. Anal. 30 (2019) 474-480. https://doi.org/10.1002/pca.2830.

[163]

Y. Chen, Y. Yan, M.Y. Xie, et al., Development of a chromatographic fingerprint for the chloroform extracts of Ganoderma lucidum by HPLC and LC-MS, J. Pharm. Biomed. Anal. 47 (2008) 469-477. https://doi.org/10.1016/j.jpba.2008.01.039.

[164]

Y. Liu, Y. Liu, F. Qiu, et al., Sensitive and selective liquid chromatographytandem mass spectrometry method for the determination of five ganoderic acids in Ganoderma lucidum and its related species, J. Pharm. Biomed. Anal. 54 (2011) 717-721. https://doi.org/10.1016/j.jpba.2010.11.002.

[165]

X.M. Wang, M. Yang, S.H. Guan, et al., Quantitative determination of six major triterpenoids in Ganoderma lucidum and related species by high performance liquid chromatography, J. Pharm. Biomed. Anal. 41 (2006)838-844. https://doi.org/10.1016/j.jpba.2006.01.053.

[166]

L. Wu, W. Liang, W. Chen, et al., Screening and analysis of the marker components in Ganoderma lucidum by HPLC and HPLC-MS(n) with the aid of chemometrics, Molecules 22 (2017) 584. https://doi.org/10.3390/molecules22040584.

[167]

J. Da, C.R. Cheng, S. Yao, et al., A reproducible analytical system based on the multi-component analysis of triterpene acids in Ganoderma lucidum, Phytochemistry 114 (2015) 146-154. https://doi.org/10.1016/j.phytochem.2014.08.007.

[168]

J. Da, W.Y. Wu, J.J. Hou, et al., Comparison of two officinal Chinese pharmacopoeia species of Ganoderma based on chemical research with multiple technologies and chemometrics analysis, J. Chromatogr. A. 1222 (2012) 59-70. https://doi.org/10.1016/j.chroma.2011.12.017.

[169]

D.A. Frommenwiler, D. Trefzer, M. Schmid, et al., Comprehensive HPTLC fingerprinting: a novel economic approach to evaluating the quality of Ganoderma lucidum fruiting body, J. Liq. Chromatogr. Relat. Technol. 43 (2020) 414-423. https://doi.org/10.1080/10826076.2020.1725560.

[170]

M.Y. Shen, M.Y. Xie, S.P. Nie, et al., Discrimination of different Ganoderma species and their region based on GC-MS profiles of sterols and pattern recognition techniques, Anal. Lett. 44 (2011) 863-873. https://doi.org/10.1080/00032711003790007.

[171]

X.M. Shi, J.S. Zhang, Q.J. Tang, et al., Fingerprint analysis of Lingzhi (Ganoderma) strains by high-performance liquid chromatography coupled with chemometric methods, World J. Microbiol. Biotechnol. 24 (2008) 2443-2450. https://doi.org/10.1007/s11274-008-9766-7.

[172]

H. Zhang, H. Jiang, Y. Chen, et al., Quality evaluation of triterpenoids in Ganoderma and related species by the quantitative analysis of multicomponents by single marker method, J. Liq. Chromatogr. Relat. Technol. 41 (2018) 860-867. https://doi.org/10.1080/10826076.2018.1531292.

[173]

H. Zhang, H. Jiang, X. Zhang, et al., Development of global chemical profiling for quality assessment of Ganoderma species by ChemPattern software, J. Anal. Methods Chem. 2018 (2018) 1675721. https://doi.org/10.1155/2018/1675721.

[174]

Y. Chen, W. Bicker, J. Wu, et al., Ganoderma species discrimination by dual-mode chromatographic fingerprinting: a study on stationary phase effects in hydrophilic interaction chromatography and reduction of sample misclassification rate by additional use of reversed-phase chromatography, J. Chromatogr. A. 1217 (2010) 1255-1265. https://doi.org/10.1016/j.chroma.2009.12.024.

[175]

Y. Chen, W. Bicker, J. Wu, et al., Simultaneous determination of 16 nucleosides and nucleobases by hydrophilic interaction chromatography and its application to the quality evaluation of Ganoderma, J. Agric. Food Chem. 60 (2012) 4243-4252. https://doi.org/10.1021/jf300076j.

[176]

Z. Qian, J. Zhao, D. Li, et al., Analysis of global components in Ganoderma using liquid chromatography system with multiple columns and detectors, J. Sep. Sci. 35 (2012) 2725-2734. https://doi.org/10.1002/jssc.201200441.

[177]

Y. Chen, M.Y. Xie, Y. Yan, et al., Discrimination of Ganoderma lucidum according to geographical origin with near infrared diffuse reflectance spectroscopy and pattern recognition techniques, Anal. Chim. Acta. 618 (2008) 121-130. https://doi.org/10.1016/j.aca.2008.04.055.

[178]

G. Yao, Y. Ma, M. Muhammad, et al., Understanding the infrared and Raman spectra of ganoderic acid A: an experimental and DFT study, Spectrochim. Acta A Mol. Biomol. Spectrosc. 210 (2019) 372-380. https://doi.org/10.1016/j.saa.2018.11.019.

[179]

National Pharmacopoeia Committee, Pharmacopoeia of the People's Republic of China, China Medical Science Press, Beijing, 2020.

[180]

X. Shi, X. Gan, X. Wang, et al., Rapid detection of Ganoderma lucidum spore powder adulterated with dyed starch by NIR spectroscopy and chemometrics, LWT-Food Sci. Technol. 167 (2022) 113829. https://doi.org/10.1016/j.lwt.2022.113829.

[181]

The United States Pharmacopeial Convention, The United States Pharmacopeia, 40th Edition ed, 2017.

[182]

N. Krone, B.A. Hughes, G.G. Lavery, et al., Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS), J. Steroid. Biochem. Mol. Biol. 121 (2010)496-504. https://doi.org/10.1016/j.jsbmb.2010.04.010.

[183]

H. Messai, M. Farman, A. Sarraj-Laabidi, et al., Chemometrics methods for specificity, authenticity and traceability analysis of olive oils: principles, classifications and applications, Foods 5 (2016) 77. https://doi.org/10.3390/foods5040077.

[184]

D. Cör, Ž. Knez, M. Knez Hrnčič, Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: a review, Molecules 23 (2018) 649. https://doi.org/10.3390/molecules23030649.

[185]

T. Miyazaki, M. Nishijima, Studies on fungal polysaccharides. XXVII. Structural examination of a water-soluble, antitumor polysaccharide of Ganoderma lucidum, Chem. Pharm. Bull. 29 (1981) 3611-3616. https://doi.org/10.1248/cpb.29.3611.

[186]

J.G. Wang, Z.C. Ma, L.N. Zhang, et al., Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum, Carbohydr. Polym. 86 (2011) 844-851. https://doi.org/10.1016/j.carbpol.2011.05.031.

[187]

H. Zhang, J.Q. Wang, S.P. Nie, et al., Sulfated modification, characterization and property of a water-insoluble polysaccharide from Ganoderma atrum, Int. J. Biol. Macromol. 79 (2015) 248-255. https://doi.org/10.1016/j.ijbiomac.2015.04.070.

[188]

L. Zhao, Y. Dong, G. Chen, et al., Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum, Carbohydr. Polym. 80 (2010) 783-789. https://doi.org/10.1016/j.carbpol.2009.12.029.

[189]

S.Q. Huang, J.W. Li, Y.Q. Li, et al., Purification and structural characterization of a new water-soluble neutral polysaccharide GLP-F1-1 from Ganoderma lucidum, Int. J. Biol. Macromol. 48 (2011) 165-169. https://doi.org/10.1016/j.ijbiomac.2010.10.015.

[190]

S.Q. Huang, Z.X. Ning, Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity, Int. J. Biol. Macromol. 47 (2010) 336-341. https://doi.org/10.1016/j.ijbiomac.2010.03.019.

[191]

M. Shi, Y. Yang, X. Hu, et al., Effect of ultrasonic extraction conditions on antioxidative and immunomodulatory activities of a Ganoderma lucidum polysaccharide originated from fermented soybean curd residue, Food Chem. 155 (2014) 50-56. https://doi.org/10.1016/j.foodchem.2014.01.037.

[192]

M. Shi, Z. Zhang, Y. Yang, Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP), Carbohydr. Polym. 95 (2013)200-206. https://doi.org/10.1016/j.carbpol.2013.02.081.

[193]

Y. Li, L. Fang, K. Zhang, Structure and bioactivities of a galactose rich extracellular polysaccharide from submergedly cultured Ganoderma lucidum, Carbohydr. Polym. 68 (2007) 323-328. https://doi.org/10.1016/j.carbpol.2006.12.001.

[194]

W. Liu, H. Wang, X. Pang, et al., Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum, Int. J. Biol. Macromol. 46 (2010) 451-457. https://doi.org/10.1016/j.ijbiomac.2010.02.006.

[195]

W. Liu, J. Xu, P. Jing, et al., Preparation of a hydroxypropyl Ganoderma lucidum polysaccharide and its physicochemical properties, Food Chem. 122 (2010) 965-971. https://doi.org/10.1016/j.foodchem.2009.11.087.

[196]

Z.L. Zhao, T.M. Yu, L.P. Zhang, Chemical study on the water soluble polysaccharide from spores of Ganoderma lucidum, Nat. Prod. Res. Dev. 17 (2005) 182-185. https://doi.org/10.16333/j.1001-6880.2005.02.017.

[197]

C. Huang, X.D. Gao, X.B. Pang, et al., Isolation, purification, composition and activity of Ganoderma lucidum polysaccharide, Chin. J. Biochem. Pharm. 26 (2005) 221-223. https://doi.org/10.3969/j.issn.1005-1678.2005.04.011.

[198]

X. Huang, H. Wu, F. Huang, et al., Analysis of polysaccharide from broken cellular wall and unbroken spore of Ganoderma lucidum, Zhong Cao Yao 37 (2006) 813-816. https://doi.org/10.1360/yc-006-1325.

[199]

Y. Sone, R. Okuda, N. Wada, et al., Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing culture of mycelium of Ganoderma lucidum, Agric. Biol. Chem. 49 (1985) 2641-2653. https://doi.org/10.1080/00021369.1985.10867134.

[200]

J. Xu, W. Liu, W. Yao, et al., Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro, Carbohydr. Polym. 78 (2009) 227-234. https://doi.org/10.1016/j.carbpol.2009.03.028.

[201]

L. Lai, D. Yang, Rheological properties of the hot-water extracted polysaccharides in Ling-Zhi (Ganoderma lucidum), Food Hydrocoll. 21 (2007) 739-746. https://doi.org/10.1016/j.foodhyd.2006.09.009.

[202]

X. Di, K.K. Chan, H.W. Leung, et al., Fingerprint profiling of acid hydrolyzates of polysaccharides extracted from the fruiting bodies and spores of Lingzhi by high-performance thin-layer chromatography, J. Chromatogr. A. 1018 (2003) 85-95. https://doi.org/10.1016/j.chroma.2003.07.015.

[203]

D.T. Wu, J. Xie, D.J. Hu, et al., Characterization of polysaccharides from Ganoderma spp. using saccharide mapping, Carbohydr. Polym. 97 (2013)398-405. https://doi.org/10.1016/j.carbpol.2013.04.101.

[204]

J. Xie, J. Zhao, D.J. Hu, et al., Comparison of polysaccharides from two species of Ganoderma, Molecules 17 (2012) 740-752. https://doi.org/10.3390/molecules17010740.

[205]

D. Pan, L. Wang, C. Chen, et al., Structure characterization of a novel neutral polysaccharide isolated from Ganoderma lucidum fruiting bodies, Food Chem. 135 (2012) 1097-1103. https://doi.org/10.1016/j.foodchem.2012.05.071.

[206]

X. Sun, H. Wang, X. Han, et al., Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods, Carbohydr. Polym. 114 (2014) 432-439. https://doi.org/10.1016/j.carbpol.2014.08.048.

[207]

Y. Xu, X. Zhang, X.H. Yan, et al., Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum, Int. J. Biol. Macromol. 135 (2019) 706-716. https://doi.org/10.1016/j.ijbiomac.2019.05.166.

[208]

H. Zhao, Q. Zhang, L. Zhao, et al., Spore powder of Ganoderma lucidum improves cancer-related fatigue in breast cancer patients undergoing endocrine therapy: a pilot clinical trial, Evid. Based Complement Alternat. Med. 2012 (2012) 809614. https://doi.org/10.1155/2012/809614.

[209]

I. Boldizsar, K. Horvath, G. Szedlay, et al., Simultaneous GC-MS quantitation of acids and sugars in the hydrolyzates of immunostimulant, water-soluble polysaccharides of basidiomycetes, Chromatographia 47 (1998) 413. https://doi.org/10.1007/BF02466472.

[210]

O.O. Orole, GC-MS evaluation, phytochemical and antinutritional screening of Ganoderma lucidum, J. Adv. Biol. Biotechnol. 5 (2016) 1-10. https://doi.org/10.9734/JABB/2016/24261.

[211]

J.Z. He, P. Shao, X.H. Men, et al., Analysis of structural characteristics of polysaccharide from Ganoderma lucidum, Chinese J. Anal. Chem. 38 (2010)372-376. https://doi.org/10.3724/SP.J.1096.2010.00372.

[212]

H. Zhao, C.J. Lai, Y. Yu, et al., Acidic hydrolysate fingerprints based on HILIC-ELSD/MS combined with multivariate analysis for investigating the quality of Ganoderma lucidum polysaccharides, Int. J. Biol. Macromol. 163 (2020) 476-484. https://doi.org/10.1016/j.ijbiomac.2020.06.206.

[213]

Y. Huang, F. Xu, W. Zhang, et al., Progress for pharmacometabolomics and its applications, J. China Pharm. Univ. 44 (2013) 105-112. https://doi.org/10.11665/j.issn.1000-5048.20130202.

[214]

S.D. Milhorini, D.D. Bellan, M. Zavadinack, et al., Antimelanoma effect of a fucoxylomannan isolated from Ganoderma lucidum fruiting bodies, Carbohydr. Polym. 294 (2022) 119823. https://doi.org/10.1016/j.carbpol.2022.119823.

[215]

S. Wachtel-Galor, J. Yuen, J.A. Buswell, et al., Ganoderma lucidum (Lingzhi or Reishi): a medicinal mushroom, 2nd edition ed, CRC Press/Taylor & Francis, Boca Raton, 2011.

[216]

H. Luo, D.C. Tan, B. Peng, et al., The pharmacological rationales and molecular mechanisms of Ganoderma lucidum polysaccharides for the therapeutic applications of multiple diseases, Am. J. Chin. Med. 50 (2022)53-90. https://doi.org/10.1142/s0192415x22500033.

[217]

H. Pan, Y. Wang, K. Na, et al., Autophagic flux disruption contributes to Ganoderma lucidum polysaccharide-induced apoptosis in human colorectal cancer cells via MAPK/ERK activation, Cell Death Dis. 10 (2019) 456. https://doi.org/10.1038/s41419-019-1653-7.

[218]

X. Dan, W. Liu, J.H. Wong, et al., A ribonuclease isolated from wild Ganoderma lucidum suppressed autophagy and triggered apoptosis in colorectal cancer cells, Front. Pharmacol. 7 (2016) 217. https://doi.org/10.3389/fphar.2016.00217.

[219]

A. Thyagarajan, A. Jedinak, H. Nguyen, et al., Triterpenes from Ganoderma lucidum induce autophagy in colon cancer through the inhibition of p38 mitogen-activated kinase (p38 MAPK), Nutr. Cancer 62 (2010) 630-640. https://doi.org/10.1080/01635580903532390.

[220]

F.S. Reis, R.T. Lima, P. Morales, et al., Methanolic extract of Ganoderma lucidum induces autophagy of AGS human gastric tumor cells, Molecules 20 (2015) 17872-17882. https://doi.org/10.3390/molecules201017872.

[221]

W. Zhang, Z. Lei, J. Meng, et al., Water Extract of Sporoderm-Broken Spores of Ganoderma lucidum induces osteosarcoma apoptosis and restricts autophagic glux, Onco. Targets Ther. 12 (2019) 11651-11665. https://doi.org/10.2147/ott.s226850.

[222]

X. Liu, Y. Xu, Y. Li, et al., Ganoderma lucidum fruiting body extracts inhibit colorectal cancer by inducing apoptosis, autophagy, and G0/G1 phase cell cycle arrest in vitro and in vivo, Am. J. Transl. Res. 12 (2020) 2675-2684.

[223]

L.X. Sun, Z.B. Lin, X.J. Li, et al., Promoting effects of Ganoderma lucidum polysaccharides on B16F10 cells to activate lymphocytes, Basic Clin. Pharmacol. Toxicol. 108 (2011) 149-154. https://doi.org/10.1111/j.1742-7843.2010.00632.x.

[224]

C. Wang, S. Shi, Q. Chen, et al., Antitumor and immunomodulatory activities of Ganoderma lucidum polysaccharides in gliomabearing rats, Integr. Cancer Ther. 17 (2018) 674-683. https://doi.org/10.1177/1534735418762537.

[225]

L.X. Sun, W.D. Li, Z.B. Lin, et al., Protection against lung cancer patient plasma-induced lymphocyte suppression by Ganoderma lucidum polysaccharides, Cell Physiol. Biochem. 33 (2014) 289-299. https://doi.org/10.1159/000356669.

[226]

J. Shen, H.S. Park, Y.M. Xia, et al., The polysaccharides from fermented Ganoderma lucidum mycelia induced miRNAs regulation in suppressed HepG2 cells, Carbohydr. Polym. 103 (2014) 319-324. https://doi.org/10.1016/j.carbpol.2013.12.044.

[227]

G. Wang, L. Wang, J. Zhou, et al., The possible role of PD-1 protein in Ganoderma lucidum-mediated immunomodulation and cancer treatment, Integr. Cancer Ther. 18 (2019) 1-13. https://doi.org/10.1177/1534735419880275.

[228]

R. Rubel, H.S.D. Santa, L.F. Dos Santos, et al., Immunomodulatory and antitumoral properties of Ganoderma lucidum and Agaricus brasiliensis(Agaricomycetes) medicinal mushrooms, Int. J. Med. Mushrooms. 20 (2018)393-403. https://doi.org/10.1615/IntJMedMushrooms.2018025979.

[229]

J. Su, L. Su, D. Li, et al., Antitumor activity of extract from the sporodermbreaking spore of Ganoderma lucidum: restoration on exhausted cytotoxic T cell with gut microbiota remodeling, Front. Immunol. 9 (2018) 1765. https://doi.org/10.3389/fimmu.2018.01765.

[230]

A. Opattova, J. Horak, S. Vodenkova, et al., Ganoderma lucidum induces oxidative DNA damage and enhances the effect of 5-fluorouracil in colorectal cancer in vitro and in vivo, Mutat. Res. 845 (2019) 403065. https://doi.org/10.1016/j.mrgentox.2019.06.001.

[231]

J. Su, D. Li, Q. Chen, et al., Anti-breast cancer enhancement of a polysaccharide from spore of Ganoderma lucidum with paclitaxel: suppression on tumor metabolism with gut microbiota reshaping, Front. Microbiol. 9 (2018) 3099. https://doi.org/10.3389/fmicb.2018.03099.

[232]

D.L. Liu, Y.J. Li, D.H. Yang, et al., Ganoderma lucidum derived ganoderenic acid B reverses ABCB1-mediated multidrug resistance in HepG2/ADM cells, Int. J. Oncol. 46 (2015) 2029-2038. https://doi.org/10.3892/ijo.2015.2925.

[233]

Q.P. Wu, Y.Z. Xie, Z. Deng, et al., Ergosterol peroxide isolated from Ganoderma lucidum abolishes microRNA miR-378-mediated tumor cells on chemoresistance, PLoS One 7 (2012) e44579. https://doi.org/10.1371/journal.pone.0044579.

[234]

D. Li, L. Gao, M. Li, et al., Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxel-induced intestinal barrier injury: apoptosis inhibition by reversing microtubule polymerization, Biomed. Pharmacother. 130 (2020) 110539. https://doi.org/10.1016/j.biopha.2020.110539.

[235]

H. Yu, Y. Yang, T. Jiang, et al., Effective radiotherapy in tumor assisted by Ganoderma lucidum polysaccharide-conjugated bismuth sulfide nanoparticles through radiosensitization and dendritic cell activation, ACS Appl. Mater Interfaces. 11 (2019) 27536-27547. https://doi.org/10.1021/acsami.9b07804.

[236]

T.P. Smina, S. De, T.P. Devasagayam, et al., Ganoderma lucidum total triterpenes prevent radiation-induced DNA damage and apoptosis in splenic lymphocytes in vitro, Mutat. Res. 726 (2011) 188-194. https://doi.org/10.1016/j.mrgentox.2011.09.005.

[237]

S. Dai, J. Liu, X. Sun, et al., Ganoderma lucidum inhibits proliferation of human ovarian cancer cells by suppressing VEGF expression and upregulating the expression of connexin 43, BMC Complement. Altern. Med. 14 (2014) 434. https://doi.org/10.1186/1472-6882-14-434.

[238]

M. Kong, Y. Yao, H. Zhang, Antitumor activity of enzymatically hydrolyzed Ganoderma lucidum polysaccharide on U14 cervical carcinoma-bearing mice, Int. J. Immunopathol. Pharmacol. 33 (2019) 1-8. https://doi.org/10.1177/2058738419869489.

[239]

V.T. Nguyen, N.T. Tung, T.D. Cuong, et al., Cytotoxic and anti-angiogenic effects of lanostane triterpenoids from Ganoderma lucidum, Phytochem. Lett. 12 (2015) 69-74. https://doi.org/https://doi.org/10.1016/j.phytol.2015.02.012.

[240]

S. Chen, T. Yong, Y. Zhang, et al., Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum, Front. Chem. 5 (2017) 85. https://doi.org/10.3389/fchem.2017.00085.

[241]

P.R. Guo, Y.W. Sheng, B. Liu, et al., Influence of Ganoderma lucidum polysaccharide on the inhibitory effects of cisplatin on the tumor growth and angiogenesis in bladder cancer (T24) cells-bearing nude mice, Jie Fang Jun Yi Xue Za Zhi 39 (2014) 470-474. https://doi.org/10.11855/j.issn.0577-7402.2014.06.09.

[242]

A. Acevedo-Díaz, G. Ortiz-Soto, I.J. Suárez-Arroyo, et al., Ganoderma lucidum extract reduces the motility of breast cancer cells mediated by the RAC-lamellipodin axis, Nutrients 11 (2019) 1116. https://doi.org/10.3390/nu11051116.

[243]

J. Loganathan, J. Jiang, A. Smith, et al., The mushroom Ganoderma lucidum suppresses breast-to-lung cancer metastasis through the inhibition of proinvasive genes, Int. J. Oncol. 44 (2014) 2009-2015. https://doi.org/10.3892/ijo.2014.2375.

[244]

K. Na, K. Li, T. Sang, et al., Anticarcinogenic effects of water extract of sporodermbroken spores of Ganoderma lucidum on colorectal cancer in vitro and in vivo, Int. J. Oncol. 50 (2017) 1541-1554. https://doi.org/10.3892/ijo.2017.3939.

[245]

L. Zheng, Y.S. Wong, M. Shao, et al., Apoptosis induced by 9,11-dehydroergosterol peroxide from Ganoderma lucidum mycelium in human malignant melanoma cells is Mcl-1 dependent, Mol. Med. Rep. 18 (2018) 938-944. https://doi.org/10.3892/mmr.2018.9035.

[246]

K. Li, K. Na, T. Sang, et al., The ethanol extracts of sporoderm-broken spores of Ganoderma lucidum inhibit colorectal cancer in vitro and in vivo, Oncol. Rep. 38 (2017) 2803-2813. https://doi.org/10.3892/or.2017.6010.

[247]

D. Sohretoglu, C. Zhang, J. Luo, et al., ReishiMax inhibits mTORC1/2 by activating AMPK and inhibiting IGFR/PI3K/Rheb in tumor cells, Signal Transduct. Target Ther. 4 (2019) 21. https://doi.org/10.1038/s41392-019-0056-7.

[248]

A.Y. Cheng, Y.C. Chien, H.C. Lee, et al., Water-extracted Ganoderma lucidum induces apoptosis and S-phase arrest via cyclin-CDK2 pathway in glioblastoma cells, Molecules 25 (2020) 3585. https://doi.org/10.3390/molecules25163585.

[249]

C. Jiao, W. Chen, X. Tan, et al., Ganoderma lucidum spore oil induces apoptosis of breast cancer cells in vitro and in vivo by activating caspase-3 and caspase-9, J. Ethnopharmacol. 247 (2020) 112256. https://doi.org/10.1016/j.jep.2019.112256.

[250]

C.S. Shao, X.H. Zhou, X.X. Zheng, et al., Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells, J. Ethnopharmacol. 262 (2020) 113213. https://doi.org/10.1016/j.jep.2020.113213.

[251]

C. Bal, Antioxidant and antimicrobial capacities of Ganoderma lucidum, J. Bacteriol. Mycol. 7 (2019) 5-7. https://doi.org/10.15406/jbmoa.2019.07.00232.

[252]

S. Quereshi, A.K. Pandey, S.S. Sandhu, Evaluation of antibacterial activity of different Ganoderma lucidum extracts, J. Sci. Res. 3 (2010) 9-13. https://doi.org/10.22159/ajpcr.2019.v12i7.33714.

[253]

R. Ghobadi, R. Mohammadi, J. Chabavizade, et al., Effect of Ganoderma lucidum powder on oxidative stability, microbial and sensory properties of emulsion type sausage, Adv. Biomed. Res. 7 (2018) 24. https://doi.org/10.4103/2277-9175.225595.

[254]

J. Mishra, A. Joshi, R. Rajput, et al., Phenolic rich fractions from mycelium and fruiting body of Ganoderma lucidum inhibit bacterial pathogens mediated by generation of reactive oxygen species and protein leakage and modulate hypoxic stress in HEK 293 cell line, Adv. Pharmacol. Sci. 2018 (2018) 6285615. https://doi.org/10.1155/2018/6285615.

[255]

N. Hoque, A.A. Faysal, I. Ahmed, et al., In vitro antioxidant, antimicrobial and cytotoxic activities of the various extracts of Ganoderma lucidum available in Bangladesh, J. Pharmacogn. Phytochem. 4 (2015) 42-46. https://doi.org/10.4016/9522.01.

[256]

G. Celk, In vitro Antimicrobial and antioxidant properties of Ganoderma lucidum extracts grown in turkey, Eur. J. Med. Plants. 4 (2014) 709-722.

[257]

M. Erawati, M. Andriany, N.S.D. Kusumaningrum, The Potential of Ganoderma lucidum as antimicrobial agent for multidrug-resistant mycobacterium tuberculosis, Antiinfect. Agents. 16 (2018) 11-14. https://doi.org/10.2174/2211352516666180227135043.

[258]

L. Hleba, N. Vuković, J. Petrová, et al., Antimicrobial activity of crude methanolic extracts from Ganoderma lucidum and Trametes versicolor, Sci Pap: Anim Sci Biotechnol. 47 (2014) 89-93. https://doi.org/10.15407/ukrbotj72.04.393.

[259]

J. Mishra, R. Rajput, K. Singh, et al., Antibacterial natural peptide fractions from Indian Ganoderma lucidum, Int. J. Pept. Res. Ther. 24 (2017) 543-554. https://doi.org/10.1007/s10989-017-9643-z.

[260]

P. Sa-Ard, R. Sarnthima, S. Khammuang, et al., Antioxidant, antibacterial and DNA protective activities of protein extracts from Ganoderma lucidum, J. Food Sci. Technol. 52 (2015) 2966-2973. https://doi.org/10.1007/s13197-014-1343-5.

[261]

S.A. Heleno, I.C. Ferreira, A.P. Esteves, et al., Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters, Food Chem. Toxicol. 58 (2013) 95-100. https://doi.org/10.1016/j.fct.2013.04.025.

[262]

H. Kaur, S. Sharma, P.K. Khanna, et al., Evaluation of Ganoderma lucidum strains for the production of bioactive components and their potential use as antimicrobial agents, J. Appl. Nat. Sci. 7 (2015) 298-303. https://doi.org/10.31018/JANS.V7I1.605.

[263]

W.A.A.Q.I. Wan-Mohtar, L. Young, G.M. Abbott, et al., Antimicrobial properties and cytotoxicity of sulfated (1,3)-β-D-glucan from the mycelium of the mushroom Ganoderma lucidum, J. Microbiol. Biotechnol. 26 (2016)999-1010. https://doi.org/10.4014/jmb.1510.10018.

[264]

S. Savin, O. Craciunescu, A. Oancea, et al., Antioxidant, cytotoxic and antimicrobial activity of chitosan preparations extracted from Ganoderma lucidum mushroom, Chem. Biodivers. 17 (2020) e2000175. https://doi.org/10.1002/cbdv.202000175.

[265]

S. Mahendran, S. Saravana, P. Vijayabaskar, et al., Antibacterial potential of microbial exopolysaccharide from Ganoderma lucidum and Lysinibacillus fusiformis, Int. J. Recent Sci. Res 4 (2013) 501-505. https://doi.org/10.1021/acs.jafc.9b01195.s001.

[266]

D.S. Stojkovic, L. Barros, R.C. Calhelha, et al., A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins, Int. J. Food Sci. Nutr. 65 (2014) 42-47. https://doi.org/10.3109/09637486.2013.832173.

[267]

Swati, A. Tiwari, P.S. Negi, et al., A Comparative evaluation of in vitro anti-inflammatory and antifungal activity of Ganoderma lucidum strains DARL-4 and MS-1, Int. J. Green Pharm. 12 (2018) S126-S130. https://doi.org/10.5204/thesis.eprints.116592.

[268]

M.A. Arias-Londoño, P.A. Zapata-Ocampo, Á. R. Mosquera-Arévalo, et al., Antifungal protein determination for submerged cultures of the medicinal mushroom Ganoderma lucidum (Ganodermataceae) with activity over the phytopathogen fungus Mycosphaerella fijiensis (Mycosphaerellaceae), Actual. Biol. 41 (2020) 53-64. https://doi.org/10.17533/udea.acbi.v41n111a04.

[269]

Y.Q. Li, S.F. Wang, Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum, Biotechnol. Lett. 28 (2006) 837-841. https://doi.org/10.1007/s10529-006-9007-9.

[270]

Y. Li, Y. Yang, L. Fang, et al., Anti-hepatitis activities in the broth of Ganoderma lucidum supplemented with a Chinese herbal medicine, Am. J. Chin. Med. 34 (2006) 341-349. https://doi.org/10.1142/s0192415x06003874.

[271]

Z. Li, J. Liu, Y. Zhao, Possible mechanism underlying the antiherpetic activity of a proteoglycan isolated from the mycelia of Ganoderma lucidum in vitro, J. Biochem. Mol. Biol. 38 (2005) 34-40. https://doi.org/10.5483/bmbrep.2005.38.1.034.

[272]

Y. Hijikata, A. Yasuhara, Y. Sahashi, Effect of an herbal formula containing Ganoderma lucidum on reduction of herpes zoster pain: a pilot clinical trial, Am. J. Chin. Med. 33 (2005) 517-523. https://doi.org/10.1142/s0192415x05003120.

[273]

S. Bharadwaj, K.E. Lee, V.D. Dwivedi, et al., Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2BNS3 protease, Sci. Rep. 9 (2019) 19059. https://doi.org/10.1038/s41598-019-55723-5.

[274]

W.Z. Lim, P.G. Cheng, A.Y. Abdulrahman, et al., The identification of active compounds in Ganoderma lucidum var. antler extract inhibiting dengue virus serine protease and its computational studies, J. Biomol. Struct. Dyn. 38 (2020) 4273-4288. https://doi.org/10.1080/07391102.2019.1678523.

[275]
P.J. Farrell, Epstein-Barr Virus and Cancer, In Annu Rev Pathol, A.K., Abbas; J.C., Aster; M.B., Feany, Eds. 2019.
DOI
[276]

S. Huh, S. Lee, S.J. Choi, et al., Quercetin synergistically inhibit ebvassociated gastric carcinoma with Ganoderma lucidum extracts, Molecules 24 (2019) 3834. https://doi.org/10.3390/molecules24213834.

[277]

D.S. Zheng, L.S. Chen, Triterpenoids from Ganoderma lucidum inhibit the activation of EBV antigens as telomerase inhibitors, Exp. Ther. Med. 14 (2017) 3273-3278. https://doi.org/10.3892/etm.2017.4883.

[278]

B. Donatini, Control of oral human papillomavirus (HPV) by medicinal mushrooms, Trametes versicolor and Ganoderma lucidum: a preliminary clinical trial, Int. J. Med. Mushrooms 16 (2014) 497-498. https://doi.org/10.1615/intjmedmushrooms.v16.i5.80.

[279]

E. Hernández-Márquez, A. Lagunas-Martínez, V.H. Bermudez-Morales, et al., Inhibitory activity of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes) on transformed cells by human papillomavirus, Int. J. Med. Mushrooms 16 (2014) 179-187. https://doi.org/10.1615/intjmedmushr.v16.i2.80.

[280]

W. Zhang, J. Tao, X. Yang, et al., Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection, Biochem. Biophys. Res. Commun. 449 (2014) 307-312. https://doi.org/10.1016/j.bbrc.2014.05.019.

[281]

T.L. Hsu, S.C. Cheng, W.B. Yang, et al., Profiling carbohydrate-receptor interaction with recombinant innate immunity receptor-Fc fusion proteins, J. Biol. Chem. 284 (2009) 34479-34489. https://doi.org/10.1074/jbc.M109.065961.

[282]

A.V. Avtonomova, L.M. Krasnopolskaya, Antiviral properties of basidiomycetes metabolites, Antibiot. Khimioter. 59 (2014) 41-48. https://doi.org/10.1007/978-981-16-4779-6_15.

[283]

R. Akbar, W.K. Yam, Interaction of ganoderic acid on HIV related target: molecular docking studies, Bioinformation 7 (2011) 413-417. https://doi.org/10.6026/97320630007413.

[284]

H.X. Wang, T.B. Ng, A laccase from the medicinal mushroom Ganoderma lucidum, Appl. Microbiol. Biotechnol. 72 (2006) 508-513. https://doi.org/10.1007/s00253-006-0314-9.

[285]

N. Suwannarach, J. Kumla, K. Sujarit, et al., Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for coronaviruses, Molecules 25 (2020) https://doi.org/10.3390/molecules25081800.

[286]

N.A. ElSayed, G. Aleppo, V.R. Aroda, et al., Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020, Diabetes Care 43 (2020) S98-S110. https://doi.org/10.2337/dc20-S009.

[287]

L. Xu, Y. Li, Y. Dai, et al., Natural products for the treatment of type 2 diabetes mellitus: pharmacology and mechanisms, Pharmacol. Res. 130 (2018) 451-465. https://doi.org/10.1016/j.phrs.2018.01.015.

[288]

D.H. Ryu, J.Y. Cho, N.B. Sadiq, et al., Optimization of antioxidant, antidiabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology, Food Chem. 335 (2021) 127645. https://doi.org/10.1016/j.foodchem.2020.127645.

[289]

M.Y. Chen, D. Xiao, W. Liu, et al., Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats, Int. J. Biol. Macromol. 155 (2020) 890-902. https://doi.org/10.1016/j.ijbiomac.2019.11.047.

[290]

H.N. Li, L.L. Zhao, D.Y. Zhou, et al., Ganoderma lucidum polysaccharides ameliorates hepatic steatosis and oxidative stress in db/db mice via targeting nuclear factor E2 (erythroid-derived 2)-related factor-2/heme oxygenase-1(HO-1) pathway, Med. Sci. Monit. 26 (2020) e921905. https://doi.org/10.12659/msm.921905.

[291]

S.D. Chen, T.Q. Yong, Y.F. Zhang, et al., Inhibitory effect of five Ganoderma species (Agaricomycetes) against key digestive enzymes related to type 2 diabetes mellitus, Int. J. Med. Mushrooms 21 (2019) 703-711. https://doi.org/10.1615/IntJMedMushrooms.v21.i7.70.

[292]

S.F. Shen, L.F. Zhu, Z.J. Wu, et al., Production of triterpenoid compounds from Ganoderma lucidum spore powder using ultrasound-assisted extraction, Prep. Biochem. Biotechnol. 50 (2020) 302-315. https://doi.org/10.1080/10826068.2019.1692218.

[293]

H. Xiao, Z. Fang, X. He, et al., Recombinant Ling Zhi-8 enhances Tregs function to restore glycemic control in streptozocin-induced diabetic rats, J. Pharm. Pharmacol. 72 (2020) 1946-1955. https://doi.org/10.1111/jphp.13360.

[294]

H. Liang, Y. Pan, Y. Teng, et al., A proteoglycan extract from Ganoderma lucidum protects pancreatic beta-cells against STZ-induced apoptosis, Biosci. Biotechnol. Biochem. (2020) 1-8. https://doi.org/10.1080/09168451.2020.1805718.

[295]

Z. Yang, C. Chen, J. Zhao, et al., Hypoglycemic mechanism of a novel proteoglycan, extracted from Ganoderma lucidum, in hepatocytes, Eur. J. Pharmacol. 820 (2018) 77-85. https://doi.org/10.1016/j.ejphar.2017.12.020.

[296]

L. Li, J.X. Xu, Y.J. Cao, et al., Preparation of Ganoderma lucidum polysaccharide-chromium (Ⅲ) complex and its hypoglycemic and hypolipidemic activities in high-fat and high-fructose diet-induced prediabetic mice, Int. J. Biol. Macromol. 140 (2019) 782-793. https://doi.org/10.1016/j.ijbiomac.2019.08.072.

[297]

N.L. Klupp, H. Kiat, A. Bensoussan, et al., A double-blind, randomised, placebo-controlled trial of Ganoderma lucidum for the treatment of cardiovascular risk factors of metabolic syndrome, Sci. Rep. 6 (2016) 29540. https://doi.org/10.1038/srep29540.

[298]

T.Y. Vitak, S.P. Wasser, E. Nevo, et al., Enzymatic system of antioxidant protection of erythrocytes in diabetic rats treated with medicinal mushrooms agaricus brasiliensis and Ganoderma lucidum (Agaricomycetes), Int. J. Med. Mushrooms 19 (2017) 697-708. https://doi.org/10.1615/IntJMedMushrooms.2017021305.

[299]

T.A. Wihastuti, R. Amiruddin, F.Y. Cesa, et al., Decreasing angiogenesis vasa vasorum through Lp-PLA2 and H2O2 inhibition by PSP from Ganoderma lucidum in atherosclerosis: in vivo diabetes mellitus type 2, J. Basic Clin. Physiol. Pharmacol. 30 (2020) 1-6. https://doi.org/10.1515/jbcpp-2019-0349.

[300]

T. Heriansyah, W. Nurwidyaningtyas, D. Sargowo, et al., Polysaccharide peptide (PsP) Ganoderma lucidum: a potential inducer for vascular repair in type 2 diabetes mellitus model, Vasc. Health Risk Manage 15 (2019) 419-427. https://doi.org/10.2147/VHRM.S205996.

[301]

C. Xiao, Q. Wu, J. Zhang, et al., Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice, J. Ethnopharmacol. 196 (2017) 47-57. https://doi.org/10.1016/j.jep.2016.11.044.

[302]

Y. Gao, H. Gao, E. Chan, et al., Protective effect of Ganoderma (a mushroom with medicinal properties) against various liver injuries, Food Rev. Int. 21 (2005) 27-52. https://doi.org/10.1081/fri-200040586.

[303]

Y. Liu, C. Zhang, J. Du, et al., Protective effect of Ganoderma lucidum polysaccharide against carbon tetrachloride-induced hepatic damage in precision-cut carp liver slices, Fish Physiol. Biochem. 43 (2017) 1209-1221. https://doi.org/10.1007/s10695-016-0333-0.

[304]

Y. Shi, J. Sun, H. He, et al., Hepatoprotective effects of Ganoderma lucidum peptides against D-galactosamine-induced liver injury in mice, J. Ethnopharmacol. 117 (2008) 415-419. https://doi.org/10.1016/j.jep.2008.02.023.

[305]

H.F. Han, N. Nakamura, M. Hattori, Protective effects of an acidic polysaccharide isolated from fruiting bodies of Ganoderma lucidum against murine hepatic injury induced by Propionibacterium acnes and lipopolysaccharide, J. Nat. Med. 60 (2006) 295-302. https://doi.org/10.1007/s11418-006-0004-z.

[306]

N.P. Sudheesh, T.A. Ajith, J. Mathew, et al., Ganoderma lucidum protects liver mitochondrial oxidative stress and improves the activity of electron transport chain in carbon tetrachloride intoxicated rats, Hepatol. Res. 42 (2012) 181-191. https://doi.org/10.1111/j.1872-034X.2011.00906.x.

[307]

X.L. Li, A.G. Zhou, X.M. Li, Inhibition of Lycium barbarum polysaccharides and Ganoderma lucidum polysaccharides against oxidative injury induced by γ-irradiation in rat liver mitochondria, Carbohydr. Polym. 69 (2007) 172-178. https://doi.org/10.1016/j.carbpol.2006.09.021.

[308]

R.J.K. Susilo, D. Winarni, S.A. Husen, et al., Hepatoprotective effect of crude polysaccharides extracted from Ganoderma lucidum against carbon tetrachloride-induced liver injury in mice, Vet. World. 12 (2019) 1987-1991. https://doi.org/10.14202/vetworld.2019.1987-1991.

[309]

Z. Hu, R. Du, L. Xiu, et al., Protective effect of triterpenes of Ganoderma lucidum on lipopolysaccharide-induced inflammatory responses and acute liver injury, Cytokine 127 (2020) 154917. https://doi.org/10.1016/j.cyto.2019.154917.

[310]

C. Zhao, J. Fan, Y. Liu, et al., Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol-induced liver injury in mice, an iTRAQbased proteomic analysis, Food Chem. 271 (2019) 148-156. https://doi.org/10.1016/j.foodchem.2018.07.115.

[311]

Y.J. Liu, J.L. Du, L.P. Cao, et al., Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachlorideinduced hepatocyte damage in common carp (Cyprinus carpio L.), Int Immunopharmacol. 25 (2015) 112-20. https://doi.org/10.1016/j.intimp.2015.01.023.

[312]

M. Oliveira, F.S. Reis, D. Sousa, et al., A methanolic extract of Ganoderma lucidum fruiting body inhibits the growth of a gastric cancer cell line and affects cellular autophagy and cell cycle, Food Funct. 5 (2014) 1389-1394. https://doi.org/10.1039/c4fo00258j.

[313]

C.Y. Liang, H.R. Li, H. Zhou, et al., Recombinant Lz-8 from Ganoderma lucidum induces endoplasmic reticulum stress-mediated autophagic cell death in SGC-7901 human gastric cancer cells, Oncol. Rep. 27 (2012) 1079-1089. https://doi.org/10.3892/or.2011.1593.

[314]

A.A. Shaito, D.T.B. Thuan, H.T. Phu, et al., Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety, Front. Pharmacol. 11 (2020) 422. https://doi.org/10.3389/fphar.2020.00422.

[315]

W.L. Shi, H. Han, G.Z. Chen, et al., Extraction, characterization of the polysaccharide extracts from Se-enriched G. lucidum (Se-GLP) and its inhibition against oxidative damage in ischemic reperfusion mice, Carbohydr. Polym. 80 (2010) 774-778. https://doi.org/10.1016/j.carbpol.2009.12.027.

[316]

X. Zhang, C. Xiao, H. Liu, Ganoderic acid a protects rat H9c2 cardiomyocytes from hypoxia-induced injury via up-regulating miR-182-5p, Cell Physiol. Biochem. 50 (2018) 2086-2096. https://doi.org/10.1159/000495053.

[317]

Y.Z. Xie, F. Yang, W. Tan, et al., The anti-cancer components of Ganoderma lucidum possesses cardiovascular protective effect by regulating circular RNA expression, Oncoence 28 (2016) 7-8. https://doi.org/10.18632/oncoscience.316.

[318]

B.E. Klein, R. Klein, K.E. Lee, Components of the metabolic syndrome and risk of cardiovascular disease and diabetes in Beaver Dam, Diabetes Care 25 (2002) 1790. https://doi.org/10.2337/diacare.25.10.1790.

[319]

C.S. Fox, M.J. Pencina, P.W. Wilson, et al., Lifetime risk of cardiovascular disease among individuals with and without diabetes stratified by obesity status in the Framingham heart study, Diabetes Care. 31 (2008) 1582-1584. https://doi.org/10.2337/dc08-0025.

[320]

B.R. Baiju, R. Retnakaran, G.L. Booth, Increased risk of cardiovascular disease in young women following gestational diabetes mellitus, Diabetes Care 31 (2008) 1668-1669. https://doi.org/10.2337/dc08-0706.

[321]

T.V. Lasukova, A.G. Arbuzov, L.N. Maslov, et al., Ganoderma lucidum extract in cardiac diastolic dysfunction and irreversible cardiomyocytic damage in ischemia and reperfusion of the isolated heart, Patol. Fiziol. Eksp. Ter. (2008) 22-25. https://doi.org/10.1007/s10517-015-2851-7.

[322]

F. Wang, Z. Zhou, X. Ren, et al., Effect of Ganoderma lucidum spores intervention on glucose and lipid metabolism gene expression profiles in type 2 diabetic rats, Lipids Health Dis. 14 (2015) 1-9. https://doi.org/10.1186/s12944-015-0045-y.

[323]

T.A. Wihastuti, T. Heriansyah, The inhibitory effects of polysaccharide peptides (PsP) of Ganoderma lucidum against atherosclerosis in rats with dyslipidemia, Heart Int. 12 (2017) e1-e7. https://doi.org/10.5301/heartint.5000234.

[324]

L. Zengenni, Y. Zhihang, L. Gaoyang, et al., Hypolipidemic, antioxidant, and antiapoptotic effects of polysaccharides extracted from reishi mushroom, Ganoderma lucidum (Leysser: Fr) Karst, in mice fed a high-fat diet, J. Med. Food 21 (2018) 1218-1227. https://doi.org/10.1089/jmf.2018.4182.

[325]

Y. Gao, X. Dai, G. Chen, et al., A randomized, placebo-controlled, multicenter study of Ganoderma lucidum (W. Curt. : Fr.) Lloyd (Aphyllophoromycetideae) polysaccharides (Ganopoly®) in patients with advanced lung cancer, Int. J. Med. Mushrooms 5 (2003) 369-382. https://doi.org/10.1615/InterJMedicMush.v5.i4.40.

[326]
W. He, J. Yi, Study of clinical efficacy of Lingzhi spore capsule on tumour patients with chemotherapy/radiotherapy, Clin. J. Trad. Chin. Med. 9 (1997)292-293. https://doi.org/CNKI:SUN:AHLC.0.1997-06-010.
[327]

M. Lu, K. Leng, Investigation of ZhengQing Lingzhi liquid as adjuvant treatment on patients with colon cancer, J. Guiyang Coll. Tradit. Chin. Med. 28 (2003) 1. https://doi.org/10.3969/j.issn.1000-2707.2003.05.021.

[328]

B. Yan, Y. Wei, Y. Li, Effect of Laojunxian Lingzhi oral liquid combined with chemotherapy on non-parvicellular lung cancer at stages Ⅱ and Ⅲ, Tradit. Chin. Drug Res. Clin. Pharmacol. 9 (1998) 78-80.

[329]

X. Zhang, Y. Jia, Q. Li, et al., Clinical curative effect investigation of Lingzhi tablet on lung cancer, Chin. Tradit. Patent. Med. 22 (2000) 486-488. https://doi.org/10.3969/j.issn.1001-1528.2000.07.012.

[330]

N. Lin, J. Su, Z. Zhu, et al., Analysis on 66 cases of cancer patients treated by chemotherapy with extract of Ganoderma lucidum, J. Pract. Tradit. Chin. Intern. Med. 18 (2004) 457-454. https://doi.org/10.3969/j.issn.1671-7813.2004.05.071.

[331]

J. Zhou, Q. Zhang, Effect of Ganoderma lucidum spore on T cell subtype and VEGF of peripheral blood in old patients with carcinoma of uterine cervix, Matern Child Health Care China. 29 (2014) 2021-2022.

[332]

Z. Zhen, F. Wang, G. Fan, et al., Effect of Ganoderma lucidum spore to the immunological function of patients with hepatocellular carcinoma after operation, Chin. J. Hepat. Surg. (Electron Ed). 2 (2013) 171-174. https://doi.org/10.3877/cma.j.issn.2095-3232.2013.03.008.

[333]

Y. Benkui, W. Yanju, L. Yuqiang, Effect of Laojunxian Lingzhi oral liquid combined with chemotherapy on non_parvicellular lung cancer at stages Ⅱand Ⅲ, Tradit. Chin. Drug Res. Pharmacol. 9 (1998) 13-16.

[334]

Z. Lin, B. Yang, Ganoderma and health: pharmacology and clinical application, Springer Nature, 2019.

DOI
[335]

H. Zhao, Q. Zhang, L. Zhao, et al., Spore powder of Ganoderma lucidum improves cancer-related fatigue in breast cancer patients undergoing endocrine therapy: a pilot clinical trial, Evid. Based Complement. Alternat. Med. 2012 (2012).

[336]

Y.H. Shieh, C.F. Liu, Y.K. Huang, et al., Evaluation of the hepatic and renalprotective effects of Ganoderma lucidum in mice, Am. J. Chin. Med. 29 (2001) 501-507. https://doi.org/10.1142/S0192415X01000526.

[337]

N. Futrakul, M. Boongen, P. Tosukhowong, et al., Treatment with vasodilators and crude extract of Ganoderma lucidum suppresses proteinuria in nephrosis with focal segmental glomerulosclerosis, Nephron 92 (2002)719-720. https://doi.org/10.1159/000064082.

[338]

G. Xiao, F. Liu, Z. Chen, Clinical observation on treatment of Russula subnigricans poisoning patients by Ganoderma lucidum decoction, Zhongguo Zhong Xi Yi Jie He Za Zhi 23 (2003) 278-280.

[339]

N. Futrakul, T. Panichakul, P. Butthep, et al., Ganoderma lucidum suppresses endothelial cell cytotoxicity and proteinuria in persistent proteinuric focal segmental glomerulosclerosis (FSGS) nephrosis, Clin. Hemorheol. Microcirc. 31 (2004) 267-272.

[340]

Y. Hijikata, A. Yasuhara, Y. Sahashi, Effect of an herbal formula containing Ganoderma lucidum on reduction of herpes zoster pain: a pilot clinical trial, Am. J. Chinese Med. 33 (2005) 517-523.

[341]

G.H. Wang, X. Li, W.H. Cao, et al., A retrospective study of Ganoderma lucidum spore powder for patients with epilepsy, Medicine 97 (2018)e10941. https://doi.org/10.1097/MD.0000000000010941.

[342]

L. Zou, H. Zhang, Research advance of morinda officinalis oligosaccharides in treatment of depression, Chin. J. New Drugs 21 (2012) 1889-1945.

[343]

L.H. Qin, C. Wang, L.W. Qin, et al., Spore powder of Ganoderma lucidum for Alzheimer's disease: a protocol for systematic review, Medicine 98 (2019)e14382. https://doi.org/10.1097/MD.0000000000014382.

[344]

E.K. Li, L.S. Tam, C.K. Wong, et al., Safety and efficacy of Ganoderma lucidum (lingzhi) and San Miao San supplementation in patients with rheumatoid arthritis: a double-blind, randomized, placebo-controlled pilot trial, Arthritis. Care Res. 57 (2007) 1143-1150. https://doi.org/10.1002/art.22994.

[345]

J.P. Gau, C.K. Lin, S.S. Lee, et al., The lack of antiplatelet effect of crude extracts from Ganoderma lucidum on HIV-positive hemophiliacs, Am. J. Chin. Med. 18 (1990) 175-179. https://doi.org/10.1142/S0192415X90000228.

[346]

H. Xu, J. Xue, Applications "Ji 731 Solution" treatment of atrophic rhinitis preliminary summary, J. Peking Univ. 3 (1979) 180.

[347]

A.M. Faruque, Ganoderma lucidum: persuasive biologically active constituents and their health endorsement, Biomed. Pharmacother.107 (2018) 507-519.https://doi.org/10.1016/j.biopha.2018.08.036.

[348]

T.R. Smina, J. Matheu, K.K. Janardhanan, et al., Antioxidant activity and toxicity profile of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst occurring in South India, Environ. Toxicol. Pharmacol.32 (2011) 438-446.https://doi.org/10.1016/j.etap.2011.08.011.

[349]

J. Zhang, X. Gao, Y. Pan, et al., Toxicology and immunology of Ganoderma lucidum polysaccharides in Kunming mice and Wistar rats, Int. J. Biol. Macromol.85 (2016) 302-310.https://doi.org/10.1016/j.ijbiomac.2015.12.090.

[350]

Y. Kwok, K.F.J. Ng, C.C.F. Li, et al., A prospective, randomized, doubleblind, placebo-controlled study of the platelet and global hemostatic effects of Ganoderma lucidum (Ling-Zhi) in healthy volunteers, Anesth. Analg.101 (2005) 423-426.https://doi.org/10.1213/01.ANE.0000155286.20467.28.

[351]

J. Tao, K.Y. Feng, Experimental and clinical studies on inhibitory effect of Ganoderma lucidum on platelet aggregation, J. Tongji Med. Univ.10 (1990)240-243.https://doi.org/10.1007/BF02887938.

[352]

S.M. Wicks, R. Tong, C.Z. Wang, et al., Safety and tolerability of Ganoderma lucidum in healthy subjects: a double-blind randomized placebocontrolled trial, Am. J. Chinese Med. 35 (2007) 407-414.https://doi.org/10.1142/S0192415X07004928.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 August 2022
Revised: 15 September 2022
Accepted: 22 September 2022
Published: 25 September 2023
Issue date: March 2024

Copyright

© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

Acknowledgements

This work was supported by Macao Science and Technology Development Fund (001/2023/ALC and 0006/2020/AKP), the Research Fund of University of Macau (CPG2023-00028-ICMS), the Guangxi Science and Technology Major Project (GUIKEAA22096029) and Macao Young Scholars Program (AM2022022).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return