AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (5.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Gecko-inspired contact-sensible and self-adaptive soft gripping of curved flexible surfaces

Wenhui Cui1Yuanzhe Li2Tianhui Sun2Tong Ling1Shiyang Guo1Wenling Zhang1( )Yu Tian2( )
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

Soft grippers are key manipulation tools for robotics and end effectors for securely grasping objects of various shapes and sizes on demand. However, critical challenges, including self-adaptive grasping to curved surfaces and monitoring the contact state, remain. Here, a gecko-inspired curved flexible surface adaptive gripper (CSAG), which consists of a variable-bending pneumatic actuator, a triboelectric sensor (T-sensor), and a gecko-inspired microwedge adhesive, is proposed. The contact-sensitive triboelectric sensor can sense the critical contact state of objects to trigger a variable-bending pneumatic actuator with sufficient shear loading for the geckoinspired microwedge adhesive. A set of experiments are implemented to verify that the proposed soft gripper can adaptively grasp diverse curved objects, including quail eggs, cans, shuttlecocks, expanding objects with varying volumes (such as balloons, the range of diameter variation is 20–115 mm), and spherical acrylic cylinders (20–40 mm) at low pressures (20–25 kPa) with a maximum weight of 37 g. Additionally, the tracking and grasping of a moving ball is demonstrated via a mean-shift algorithm based on image recognition coupled with coordination tracking of a robotic arm. The soft gripper provides a new paradigm to achieve switchable grasping of curved flexible surfaces, which broadens future applications for versatile unstructured human‒robot‒environment interactions, such as adaptive robots and medical devices.

Electronic Supplementary Material

Video
S1.mp4
S2.mp4
S3.mp4
S4.mp4
S5.mp4
S6.mp4
S7.mp4
Download File(s)
F1027-ESM.pdf (1 MB)

References

[1]

Qu J T, Mao B J, Li Z K, Xu Y N, Zhou K Y, Cao X Y, Fan Q G, Xu M Y, Liang B, Liu H D, et al. Recent progress in advanced tactile sensing technologies for soft grippers. Adv Funct Mater 33(41): 2306249 (2023)

[2]

Lin Y Q, Zhang C, Tang W, Jiao Z D, Wang J R, Wang W, Zhong Y D, Zhu P G, Hu Y, Yang H Y, et al. A bioinspired stress-response strategy for high-speed soft grippers. Adv Sci 8(21): 2102539 (2021)

[3]

Liu Y C, Zhang J T, Lou Y X, Zhang B H, Zhou J, Chen J J. Soft bionic gripper with tactile sensing and slip detection for damage-free grasping of fragile fruits and vegetables. Comput Electron Agr 220: 108904 (2024)

[4]

Hao T Z, Xiao H P, Liu S H, Liu Y B. Fingerprint-inspired surface texture for the enhanced tip pinch performance of a soft robotic hand in lubricated conditions. Friction 11(7): 1349–1358 (2023)

[5]

Li S, Tian H M, Wang C H, Li X M, Chen X L, Chen X M, Shao J Y. Smart manipulation of complex optical elements via contact-adaptive dry adhesive. Adv Sci 10(30): 2303874 (2023)

[6]

Li X S, Li X X, Li L Z, Sun T H, Meng Y G, Tian Y. Trumpet-shaped controllable adhesive structure for manipulation of millimeter-sized objects. Smart Mater Struct 30(11): 115003 (2021)

[7]

Zhu J Q, Chai Z P, Yong H C, Xu Y, Guo C F, Ding H, Wu Z G. Bioinspired multimodal multipose hybrid fingers for wide-range force, compliant, and stable grasping. Soft Robot 10(1): 30–39 (2023)

[8]

Ilievski F, Mazzeo A D, Shepherd R F, Chen X, Whitesides G M. Soft robotics for chemist. Angew Chem Int Edit 220: 108904 (2011)

[9]

Becker K, Teeple C, Charles N, Jung Y, Baum D, Weaver J C, Mahadevan L, Wood R. Active entanglement enables stochastic, topological grasping. P Natl A Sci USA 119(42): e2209819119 (2022)

[10]

Zhang S, Zhang B S, Zhao D, Gao Q, Wang Z L, Cheng T H. Nondestructive dimension sorting by soft robotic grippers integrated with triboelectric sensor. ACS Nano 16(2): 3008–3016 (2022)

[11]

Dilibal S, Sahin H, Danquah J O, Emon M O F, Choi J W. Additively manufactured custom soft gripper with embedded soft force sensors for an industrial robot. Int J Precis Eng Man 22(4): 709–718 (2021)

[12]

Guo J, Elgeneidy K, Xiang C, Lohse N, Justham L, Rossiter J. Soft pneumatic grippers embedded with stretchable electroadhesion. Smart Mater Struct 27(5): 055006 (2018)

[13]

Zhang L W, Chen H W, Guo Y R, Wang Y, Jiang Y G, Zhang D Y, Ma L R, Luo J B, Jiang L. Micro-nano hierarchical structure enhanced strong wet friction surface inspired by tree frogs. Adv Sci 7(20): 2001125 (2020)

[14]

Tawk C, Gillett A, in het Panhuis M, Spinks G M, Alici G. A 3D-printed omni-purpose soft gripper. IEEE T Robot 35(5): 1268–1275 (2019)

[15]

Frey S T, Haque A B M T, Tutika R, Krotz E V, Lee C H, Haverkamp C B, Markvicka E J, Bartlett M D. Octopus-inspired adhesive skins for intelligent and rapidly switchable underwater adhesion. Sci Adv 8(28): 1905 (2022)

[16]

Zhou M, Pesika N, Zeng H B, Tian Y, Israelachvili J. Recent advances in gecko adhesion and friction mechanisms and development of gecko-inspired dry adhesive surfaces. Friction 1(2): 114–129 (2013)

[17]

Duan W W, Yu Z L, Cui W H, Zhang Z X, Zhang W L, Tian Y. Bio-inspired switchable soft adhesion for the boost of adhesive surfaces and robotics applications: A brief review. Adv Colloid Interfac 313: 102862 (2023)

[18]

Song Y, Wang Z Y, Li Y, Dai Z D. Electrostatic attraction caused by triboelectrification in climbing geckos. Friction 10(1): 44–53 (2022)

[19]

Li X S, Tao D S, Lu H Y, Bai P P, Liu Z Y, Ma L R, Meng Y G, Tian Y. Recent developments in gecko-inspired dry adhesive surfaces from fabrication to application. Surf Topogr: Metrol Prop 7(2): 023001 (2019)

[20]

Shi Z K, Tan D, Wang Z, Xiao K J, Zhu B, Meng F D, Liu Q, Wang X, Xue L J. Switchable adhesion on curved surfaces mimicking the coordination of radial-oriented spatular tips and motion of gecko toes. ACS Appl Mater Inter 14(27): 31448–31454 (2022)

[21]

Hashizume J, Huh T M, Suresh S A, Cutkosky M R. Capacitive sensing for a gripper with gecko-inspired adhesive film. IEEE Robot Autom Lett 4(2): 677–683 (2019)

[22]

Chu Z Y, Deng J, Su L, Cui J, Sun F C. A gecko-inspired adhesive robotic end effector for critical-contact manipulation. Sci China Inform Sci 65(8): 182203 (2022)

[23]

Glick P, Suresh S A, Ruffatto D, Cutkosky M, Tolley M T, Parness A. A soft robotic gripper with gecko-inspired adhesive. IEEE Robot Autom Lett 3(2): 903–910 (2018)

[24]

Lin Z F, Wang Z Y, Zhao W Y, Xu Y T, Wang X P, Zhang T W, Sun Z L, Lin L, Peng Z C. Recent advances in perceptive intelligence for soft robotics. Adv Intell Syst 5(5): 2200329 (2023)

[25]

Chen Y, Guo S F, Li C F, Yang H, Hao L N. Size recognition and adaptive grasping using an integration of actuating and sensing soft pneumatic gripper. Robot Auton Syst 104: 14–24 (2018)

[26]

Wang H B, Totaro M, Beccai L. Toward perceptive soft robots: Progress and challenges. Adv Sci 5(9): 1800541 (2018)

[27]

Hinchet R, Seung W, Kim S W. Recent progress on flexible triboelectric nanogenerators for SelfPowered electronics. ChemSusChem 8(14): 2327–2344 (2015)

[28]

Zhou L L, Liu D, Wang J, Wang Z L. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction 8(3): 481–506 (2020)

[29]

Yang W X, Wang J Y, Wang X L, Chen P. Anisotropic tribology and electrification properties of sliding-mode triboelectric nanogenerator with groove textures. Friction 12(8): 1828–1837 (2024)

[30]

Jin T, Sun Z D, Li L, Zhang Q, Zhu M L, Zhang Z X, Yuan G J, Chen T, Tian X Y, Hou X Y, Lee C K. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat Commun 11(1): 5381 (2020)

[31]

Su H, Hou X, Zhang X, Qi W, Cai S T, Xiong X M, Guo J. Pneumatic soft robots: Challenges and benefits. Actuators 11(3): 92 (2022)

[32]

Zhang Z, Ni X Q, Wu H L, Sun M, Bao G J, Wu H W, Jiang S F. Pneumatically actuated soft gripper with bistable structures. Soft Robot 9(1): 57–71 (2022)

[33]

Sun T, Chen Y L, Han T Y, Jiao C L, Lian B B, Song Y M. A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller. Robot Cim-Int Manuf 61: 101848 (2020)

[34]

Yang Y, Zhang H L, Chen J, Jing Q S, Zhou Y S, Wen X N, Wang Z L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7(8): 7342–7351 (2013)

[35]

Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis. IEEE T Pattern Anal 24(5): 603–619 (2002)

[36]

Wu K L, Yang M S. Mean shift-based clustering. Pattern Recogn 40(11): 3035–3052 (2007)

[37]

Tao D S, Gao X, Lu H Y, Liu Z Y, Li Y, Tong H, Pesika N, Meng Y G, Tian Y. Controllable anisotropic dry adhesion in vacuum: Gecko inspired wedged surface fabricated with ultraprecision diamond cutting. Adv Funct Mater 27(22): 1606576 (2017)

[38]

Seghir R, Arscott S. Extended PDMS stiffness range for flexible systems. Sensor Actuat A-Phys 230: 33–39 (2015)

[39]

Sarrazin B, Brossard R, Guenoun P, Malloggi F. Investigation of PDMS based bi-layer elasticity via interpretation of apparent Young’s modulus. Soft Matter 12(7): 2200–2207 (2016)

[40]

Song Y, Yuan J W, Zhang L H, Dai Z D, Full R J. Size, shape and orientation of macro-sized substrate protrusions affect the toe and foot adhesion of geckos. J Exp Biol 224(8): 223438 (2021)

[41]

Sinatra N R, Teeple C B, Vogt D M, Parker K K, Gruber D F, Wood R J. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci Robot 4(33): eaax5425 (2019)

[42]

Chen R, Wu L, Sun Y, Chen J Q, Guo J L. Variable stiffness soft pneumatic grippers augmented with active vacuum adhesion. Smart Mater Struct 29(10): 105028 (2020)

[43]
Dontu S, Kanhere E, Alvarado P V Y. Starfish-inspired scooping soft gripper for cluster grasping applications. In: Proceedings of the IEEE 7th International Conference on Soft Robotics (RoboSoft), San Diego, USA, 2024: 1034–1041.
Friction
Cite this article:
Cui W, Li Y, Sun T, et al. Gecko-inspired contact-sensible and self-adaptive soft gripping of curved flexible surfaces. Friction, 2025, https://doi.org/10.26599/FRICT.2025.9441027

699

Views

71

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 May 2024
Revised: 12 October 2024
Accepted: 24 October 2024
Published: 12 March 2025
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return