AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Investigation of interface materials for enhancing stability in nonfullerene solar cells

Xuning Zhang1,2,3( )Yanxun Li3Ya-Nan Jing2Shilin Li2Linge Xiao3Jianhui Chen1Hong Zhang3( )Huiqiong Zhou3( )Yuan Zhang2( )
Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Show Author Information

Graphical Abstract

Abstract

Organic solar cells (OSCs) have attracted attention due to their lightweight nature, flexibility, and facile preparation using solution-based methods. Their efficiency has been further elevated by the rapid advancement of nonfullerene materials, achieving individual cell efficiencies that surpass 19%. Hence, the stability of nonfullerene solar cell production must be scrutinized. The stability of the cathode interface layer significantly impacts the overall stability of OSC devices. PFN-Br, a commonly employed cathode interface material, is susceptible to degradation due to its sensitivity to environmental humidity, consequently compromising the device stability. In this study, we introduce fluorescent dye molecules, rhodamine 101, as cathode interface layers in OSCs to establish device stability and assess their universality. A comparative investigation of rhodamine 101 and PFN-Br devices demonstrates the former’s distinct advantages in terms of thermal stability, photostability, and storage stability even without encapsulation, particularly in an inert environment. By employing the Kelvin probe, we compare the work function of different cathode interface films and reveal that the work function of the rhodamine 101 interface material remains relatively unaffected by environmental factors. As a consequence, the device performance stability is significantly enhanced. The application of such fluorescent dye molecules extends the scope of cathode interface layers, amplifies device stability, and propels industrialization.

References

[1]

Ameri, T., Khoram, P., Min, J., Brabec, C. J. (2013). Organic ternary solar cells: a review. Adv. Mater. 25, 4245–4266.

[2]

Baran, D., Ashraf, R. S., Hanifi, D. A., Abdelsamie, M., Gasparini, N., Röhr, J. A., Holliday, S., Wadsworth, A., Lockett, S., Neophytou, M., et al. (2017). Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369.

[3]

Brabec, C. J., Gowrisanker, S., Halls, J. J. M., Laird, D., Jia, S. J., Williams, S. P. (2010). Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856.

[4]

Brabec, C. J., Sariciftci, N. S., Hummelen, J. C. (2001). Plastic solar cells. 3.0.CO;2-A">Adv. Funct. Mater. 11, 15–26.

[5]

Bundgaard, E., Krebs, F. C. (2007). Low band gap polymers for organic photovoltaics. Sol. Energy Mater. Sol. Cells 91, 954–985.

[6]

Cheng, P., Zhan, X. W. (2016). Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 45, 2544–2582.

[7]

Cowan, S. R., Roy, A., Heeger, A. J. (2010). Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 82, 245207.

[8]

Credgington, D., Jamieson, F. C., Walker, B., Nguyen, T. Q., Durrant, J. R. (2012). Quantification of geminate and non-geminate recombination losses within a solution-processed small-molecule bulk heterojunction solar cell. Adv. Mater. 24, 2135–2141.

[9]

David, T. W., Anizelli, H., Jacobsson, T. J., Gray, C., Teahan, W., Kettle, J. (2020). Enhancing the stability of organic photovoltaics through machine learning. Nano Energy 78, 105342.

[10]

Duan, L. P., Uddin, A. (2020). Progress in stability of organic solar cells. Adv. Sci. 7, 1903259.

[11]

Facchetti, A. (2011). π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758.

[12]

Günes, S., Neugebauer, H., Sariciftci, N. S. (2007). Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338.

[13]

Han, Y. F., Dong, H. L., Pan, W., Liu, B. W., Chen, X. Z., Huang, R., Li, Z. Y., Li, F. S., Luo, Q., Zhang, J. Q., et al. (2021). An efficiency of 16.46% and a T80 lifetime of over 4000 h for the PM6:Y6 inverted organic solar cells enabled by surface acid treatment of the zinc oxide electron transporting layer. ACS Appl. Mater. Interfaces 13, 17869–17881.

[14]

Huang, K. M., Wong, Y. Q., Lin, M. C., Chen, C. H., Liao, C. H., Chen, J. Y., Huang, Y. H., Chang, Y. F., Tsai, P. T., Chen, S. H., et al. (2019). Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216 cm2. Prog. Photovoltaics Res. Appl. 27, 264–274.

[15]

Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M., Heeger, A. J. (2007). Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225.

[16]

Ko, D. H., Tumbleston, J. R., Gadisa, A., Aryal, M., Liu, Y. C., Lopez, R., Samulski, E. T. (2011). Light-trapping nano-structures in organic photovoltaic cells. J. Mater. Chem. 21, 16293–16303.

[17]

Kyaw, A. K. K., Wang, D. H., Gupta, V., Leong, W. L., Ke, L., Bazan, G. C., Heeger, A. J. (2013). Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. ACS Nano 7, 4569–4577.

[18]

Li, G., Shrotriya, V., Huang, J. S., Yao, Y., Moriarty, T., Emery, K., Yang, Y. (2005). High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868.

[19]

Li, Y. X., Huang, X. H., Ding, K., Sheriff, H. K. M., Ye, L., Liu, H. R., Li, C. Z., Ade, H., Forrest, S. R. (2021). Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nat. Commun. 12, 5419.

[20]

Li, Z., Gao, F., Greenham, N. C., McNeill, C. R. (2011). Comparison of the operation of polymer/fullerene, polymer/polymer, and polymer/nanocrystal solar cells: a transient photocurrent and photovoltage study. Adv. Funct. Mater. 21, 1419–1431.

[21]

Lin, Y. Z., Wang, J. Y., Zhang, Z. G., Bai, H. T., Li, Y. F., Zhu, D. B., Zhan, X. W. (2015). An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174.

[22]

Liu, F., Zhou, L., Liu, W. R., Zhou, Z. C., Yue, Q. H., Zheng, W. Y., Sun, R., Liu, W. Y., Xu, S. J., Fan, H. J., et al. (2021). Organic solar cells with 18% efficiency enabled by an alloy acceptor: A two-in-one strategy. Adv. Mater. 33, 2100830.

[23]

Liu, G. C., Xia, R. X., Huang, Q. R., Zhang, K., Hu, Z. C., Jia, T., Liu, X., Yip, H. L., Huang, F. (2021). Tandem organic solar cells with 18.7% efficiency enabled by suppressing the charge recombination in front sub-cell. Adv. Funct. Mater. 31, 2103283.

[24]

Liu, W. R., Zhang, J. Y., Zhou, Z. C., Zhang, D. Y., Zhang, Y., Xu, S. J., Zhu, X. Z. (2018). Design of a new fused-ring electron acceptor with excellent compatibility to wide-bandgap polymer donors for high-performance organic photovoltaics. Adv. Mater. 30, 1800403.

[25]

Maurano, A., Shuttle, C. G., Hamilton, R., Ballantyne, A. M., Nelson, J., Zhang, W. M., Heeney, M., Durrant, J. R. (2011). Transient optoelectronic analysis of charge carrier losses in a selenophene/fullerene blend solar cell. J. Phys. Chem. C 115, 5947–5957.

[26]

Meng, L. X., Zhang, Y. M., Wan, X. J., Li, C. X., Zhang, X., Wang, Y. B., Ke, X., Xiao, Z., Ding, L. M., Xia, R. X., et al. (2018). Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098.

[27]

Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., Kahn, A. (2012). Transition metal oxides for organic electronics: energetics, device physics and applications. Adv. Mater. 24, 5408–5427.

[28]

Qi, B. Y., Zhang, Z. G., Wang, J. Z. (2015). Uncovering the role of cathode buffer layer in organic solar cells. Sci. Rep. 5, 7803.

[29]

Riedel, I., Parisi, J., Dyakonov, V., Lutsen, L., Vanderzande, D., Hummelen, J. C. (2004). Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14, 38–44.

[30]

Shao, S. Y., Zheng, K. B., Zidek, K., Chabera, P., Pullerits, T., Zhang, F. L. (2013). Optimizing ZnO nanoparticle surface for bulk heterojunction hybrid solar cells. Sol. Energy Mater. Sol. Cells 118, 43–47.

[31]

Steim, R., Kogler, F. R., Brabec, C. J. (2010). Interface materials for organic solar cells. J. Mater. Chem. 20, 2499–2512.

[32]

Tavakoli, M. M., Dastjerdi, H. T., Zhao, J. Y., Shulenberger, K. E., Carbonera, C., Po, R., Cominetti, A., Bianchi, G., Klein, N. D., Bawendi, M. G., et al. (2019). Light management in organic photovoltaics processed in ambient conditions using ZnO nanowire and antireflection layer with nanocone array. Small 15, 1900508.

[33]

Thompson, B. C., Fréchet, J. M. J. (2008). Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58–77.

[34]

Xu, X., Xiao, J. Y., Zhang, G. C., Wei, L., Jiao, X. C., Yip, H. L., Cao, Y. (2020). Interface-enhanced organic solar cells with extrapolated T80 lifetimes of over 20 years. Sci. Bull. 65, 208–216.

[35]

Yan, C. Q., Barlow, S., Wang, Z. H., Yan, H., Jen, A. K. Y., Marder, S. R., Zhan, X. W. (2018). Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003.

[36]

Yao, H. F., Ye, L., Zhang, H., Li, S. S., Zhang, S. Q., Hou, J. H. (2016). Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 116, 7397–7457.

[37]

Zhang, H., Li, Y. X., Zhang, X. N., Zhang, Y., Zhou, H. Q. (2020). Role of interface properties in organic solar cells: from substrate engineering to bulk-heterojunction interfacial morphology. Mater. Chem. Front. 4, 2863–2880.

[38]

Zhang, H., Shallcross, R. C., Li, N., Stubhan, T., Hou, Y., Chen, W., Ameri, T., Turbiez, M., Armstrong, N. R., Brabec, C. J. (2016). Overcoming electrode-induced losses in organic solar cells by tailoring a quasi-ohmic contact to fullerenes via solution-processed alkali hydroxide layers. Adv. Energy Mater. 6, 1502195.

[39]

Zhang, M., Zhu, L., Zhou, G. Q., Hao, T. Y., Qiu, C. Q., Zhao, Z., Hu, Q., Larson, B. W., Zhu, H. M., Ma, Z. F., et al. (2021). Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat. Commun. 12, 309.

[40]

Zhang, Q., Kan, B., Liu, F., Long, G. K., Wan, X. J., Chen, X. Q., Zuo, Y., Ni, W., Zhang, H. J., Li, M. M., et al. (2015). Small-molecule solar cells with efficiency over 9%. Nat. Photonics 9, 35–41.

[41]

Zhang, T., Zhao, X. L., Yang, D. L., Tian, Y. M., Yang, X. N. (2018). Ternary organic solar cells with >11% efficiency incorporating thick photoactive layer and nonfullerene small molecule acceptor. Adv. Energy Mater. 8, 1701691.

[42]

Zhang, Z. G., Qi, B. Y., Jin, Z. W., Chi, D., Qi, Z., Li, Y. F., Wang, J. Z. (2014). Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy Environ. Sci. 7, 1966–1973.

[43]

Zhou, Y. H., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A. J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., et al. (2012). A universal method to produce low-work function electrodes for organic electronics. Science 336, 327–332.

Energy Materials and Devices
Article number: 9370033
Cite this article:
Zhang X, Li Y, Jing Y-N, et al. Investigation of interface materials for enhancing stability in nonfullerene solar cells. Energy Materials and Devices, 2024, 2(1): 9370033. https://doi.org/10.26599/EMD.2024.9370033

1115

Views

215

Downloads

1

Crossref

2

Scopus

Altmetrics

Received: 18 December 2023
Revised: 22 March 2024
Accepted: 25 March 2024
Published: 29 March 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return