822
Views
219
Downloads
3
Crossref
N/A
WoS
N/A
Scopus
N/A
CSCD
Recently, steady-state visual evoked potential (SSVEP) has become one of the most popular electroencephalography paradigms due to its high information transfer rate. Several approaches have been proposed to improve the performance of SSVEP. The calibration- free scenario is significant in SSVEP-based brain-computer interface systems, where the subject is the first time to use the system. The participating teams proposed several effective calibration-free algorithm frameworks in the SSVEP competition (calibration-free) of the BCI Controlled Robot Contest in World Robot Contest 2021. This paper introduces the approaches used in the algorithms of the top five teams in the final. The results of the five subjects in the final proved the effectiveness of the approaches. This paper discusses the effectiveness of each approach in improving the system performance in the calibration-free scenario and gives suggestions on how to use these approaches in a real-world system.
Recently, steady-state visual evoked potential (SSVEP) has become one of the most popular electroencephalography paradigms due to its high information transfer rate. Several approaches have been proposed to improve the performance of SSVEP. The calibration- free scenario is significant in SSVEP-based brain-computer interface systems, where the subject is the first time to use the system. The participating teams proposed several effective calibration-free algorithm frameworks in the SSVEP competition (calibration-free) of the BCI Controlled Robot Contest in World Robot Contest 2021. This paper introduces the approaches used in the algorithms of the top five teams in the final. The results of the five subjects in the final proved the effectiveness of the approaches. This paper discusses the effectiveness of each approach in improving the system performance in the calibration-free scenario and gives suggestions on how to use these approaches in a real-world system.
This research was supported by the National Key Research and Development Program of China (Grant No. 2021ZD0201303), the Technology Innovation Project of Hubei Province of China (Grant No. 2019AEA171), and the Hubei Province Funds for Distinguished Young Scholars (Grant No. 2020CFA050).
This article is published with open access at journals.sagepub.com/home/BSA
Creative Commons Non Commercial CC BY- NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/ en-us/nam/open-access-at-sage).