AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Negative Sentiment Shift on a Chinese Movie-Rating Website

Social Sciences Division, University of Chicago, Chicago, IL 60637, USA
Show Author Information

Abstract

Shifting to negativity is more and more prevalent in online communities and may play a key role in group polarization. While current research indicates a close relationship between group polarization and negative sentiment, they often link negative sentiment shifts with echo chambers and misinformation within echo chambers. In this work, we explore the sentiment drift using over 4 million comments from a Chinese online movie-rating community that is less affected by misinformation than other mainstream online communities and has no echo chamber structures. We measure the sentiment shift of the community and users of different engagement levels. Our analysis reveals that while the community does not show a tendency toward negativity, users of higher engagement levels are generally more negative, considering factors like the different movies they consume. The results indicate a fitting-in process, suggesting the possible mechanism of group identity on sentiment shift on social media platforms. These findings also provide guidance on web design to tackle the negativity issue and expand sentiment shift analysis to non-English contexts.

References

[1]
S. Tsugawa and H. Ohsaki, Negative messages spread rapidly and widely on social media, in Proc. 2015 ACM Conf. Online Social Networks, Palo Alto, CA, USA, 2015, pp. 151–160.
[2]
J. A. Fine and M. F. Hunt, Negativity and elite message diffusion on social media, Political Behav. doi: https://doi.org/10.1007/s11109-021-09740-8.
[3]

L. Teng, D. Liu, and J. Luo, Explicating user negative behavior toward social media: An exploratory examination based on stressor–strain–outcome model, Cogn. Technol. Work., vol. 24, no. 1, pp. 183–194, 2022.

[4]

X. Zhang, X. Ding, and L. Ma, The influences of information overload and social overload on intention to switch in social media, Behav. Inf. Technol., vol. 41, no. 2, pp. 228–241, 2022.

[5]

L. Munn, Angry by design: Toxic communication and technical architectures, Humanit. Soc. Sci. Commun., vol. 7, no. 1, pp. 1–11, 2020.

[6]
E. Omernick and S. O. Sood, The impact of anonymity in online communities, in Proc. 2013 Int. Conf. Social Computing, Alexandria, VA, USA, 2014, pp. 526–535.
[7]

R. F. Baumeister, E. Bratslavsky, C. Finkenauer, and K. D. Vohs, Bad is stronger than good, Rev. Gen. Psychol., vol. 5, no. 4, pp. 323–370, 2001.

[8]
C. R. Sunstein, The law of group polarization, https://chicagounbound.uchicago.edu/law_and_economics/542/, 1999.
[9]

J. K. Lee, J. Choi, C. Kim, and Y. Kim, Social media, network heterogeneity, and opinion polarization, J. Commun., vol. 64, no. 4, pp. 702–722, 2014.

[10]

S. Yardi and D. Boyd, Dynamic debates: An analysis of group polarization over time on twitter, Bull. Sci. Technol. Soc., vol. 30, no. 5, pp. 316–327, 2010.

[11]

F. Zollo, P. K. Novak, M. D. Vicario, A. Bessi, I. Mozetič, A. Scala, G. Caldarelli, and W. Quattrociocchi, Emotional dynamics in the age of misinformation, PloS One, vol. 10, no. 9, p. e0138740, 2015.

[12]

M. D. Vicario, G. Vivaldo, A. Bessi, F. Zollo, A. Scala, G. Caldarelli, and W. Quattrociocchi, Echo chambers: Emotional contagion and group polarization on facebook, Sci. Rep., vol. 6, no. 1, p. 37825, 2016.

[13]
A. Abisheva, D. Garcia, and F. Schweitzer, When the filter bubble bursts: Collective evaluation dynamics in online communities, in Proc. 8 th ACM Conf. Web Science, Hannover, Germany, 2016, pp. 307–308.
[14]

J. Buder, L. Rabl, M. Feiks, M. Badermann, and G. Zurstiege, Does negatively toned language use on social media lead to attitude polarization? Comput. Hum. Behav., vol. 116, p. 106663, 2021.

[15]

M. A. Cacciatore, D. A. Scheufele, and S. Iyengar, The end of framing as we know it … and the future of media effects, Mass Commun. Soc., vol. 19, no. 1, pp. 7–23, 2016.

[16]
A. Bessi, F. Petroni, M. D. Vicario, F. Zollo, A. Anagnostopoulos, A. Scala, G. Caldarelli, and W. Quattrociocchi, Viral misinformation: The role of homophily and polarization, in Proc. 24 th Int. Conf. World Wide Web, Florence, Italy, 2015, pp. 355–356.
[17]
J. Devlin, M. -W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv: 1810.04805, 2018.
[18]
A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, Learning word vectors for sentiment analysis, in Proc. 49 th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA, 2011, pp. 142–150.
[19]

A. Chmiel, P. Sobkowicz, J. Sienkiewicz, G. Paltoglou, K. Buckley, M. Thelwall, and J. A. Hołyst, Negative emotions boost user activity at BBC forum, Phys. A, vol. 390, no. 16, pp. 2936–2944, 2011.

[20]
Z. Yang and W. Xu, Who post more negatively on social media? A large-scale sentiment analysis of Weibo users, Current Psychology. doi: 10.1007/s12144-022-03616-8.
[21]
Q. Gao, F. Abel, G. -J. Houben, and Y. Yu, A comparative study of users’ microblogging behavior on Sina Weibo and Twitter, in Proc. 20 th Int. Conf. User Modeling, Adaptation, and Personalization, Montreal, Canada, 2012, pp. 88–101.
[22]
P. Wallace, The Psychology of the Internet. Cambridge, UK: Cambridge University Press, 2015.
[23]

T. M. Amabile, Brilliant but cruel: Perceptions of negative evaluators, J. Exp. Soc. Psychol., vol. 19, no. 2, pp. 146–156, 1983.

Journal of Social Computing
Pages 168-180
Cite this article:
Mao H. Negative Sentiment Shift on a Chinese Movie-Rating Website. Journal of Social Computing, 2023, 4(2): 168-180. https://doi.org/10.23919/JSC.2023.0014

2780

Views

508

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 21 February 2023
Revised: 06 June 2023
Accepted: 22 July 2023
Published: 30 June 2023
© The author(s) 2023.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return