Journal Home > Volume 3 , Issue 4

Blockchain is an emerging decentralized data collection, sharing, and storage technology, which have provided abundant transparent, secure, tamper-proof, secure, and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-enabled applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus and storage mechanisms and communication schema in general blockchain systems. Then extensive literature review is conducted on blockchain-enabled Internet of Things (IoT), edge computing, federated learning, and several emerging applications including healthcare, COVID-19 pandemic, online social network, and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges, and opportunities in both academia and industry.


menu
Abstract
Full text
Outline
About this article

Recent Advances of Blockchain and Its Applications

Show Author's information Xiao Li1Weili Wu1( )
Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA

Abstract

Blockchain is an emerging decentralized data collection, sharing, and storage technology, which have provided abundant transparent, secure, tamper-proof, secure, and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-enabled applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus and storage mechanisms and communication schema in general blockchain systems. Then extensive literature review is conducted on blockchain-enabled Internet of Things (IoT), edge computing, federated learning, and several emerging applications including healthcare, COVID-19 pandemic, online social network, and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges, and opportunities in both academia and industry.

Keywords: social network, edge computing, healthcare, blockchain, federated learning

References(254)

[1]

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Decentralized Business Review, p. 21260, 2008.

[2]

G. Wood, Ethereum: A secure decentralised generalized transaction ledger, Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[3]
S. King and S. Nadal, Ppcoin: Peer-to-peer crypto-currency with proof-of-stake, https://peercoin.net/assets/paper/peercoin-paper.pdf, 2012.
[4]

F. Schär, Decentralized finance: On blockchain- and smart contract-based financial markets, Federal Reserve Bank of St. Louis Review, vol. 103, no. 2, pp. 153–174, 2021.

[5]

L. D. Xu, Y. Lu, and L. Li, Embedding blockchain technology into IoT for security: A survey, IEEE Internet Things J., vol. 8, no. 13, pp. 10452–10473, 2021.

[6]

M. A. Uddin, A. Stranieri, I. Gondal, and V. Balasubramanian, A survey on the adoption of blockchain in IoT: Challenges and solutions, Blockchain:Research and Applications, vol. 2, no. 2, p. 100006, 2021.

[7]

R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, Integrated blockchain and edge computing systems: A survey, some research issues and challenges, IEEE Commun. Surv. Tutorials, vol. 21, no. 2, pp. 1508–1532, 2019.

[8]
R. Belchior, M. Correia, and A. Vasconcelos, Justicechain: Using blockchain to protect justice logs, in Proc. Confederated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes, Greece, 2019, pp. 318–325.
DOI
[9]
R. Belchior, A. Vasconcelos, and M. Correia, Towards secure, decentralized, and automatic audits with blockchain, presented at 28th European Conference on Information Systems, Marrakech, Morocco, 2020.
[10]

H. M. Hussien, S. M. Yasin, N. I. Udzir, A. A. Zaidan, and B. B. Zaidan, A systematic review for enabling of develop a blockchain technology in healthcare application: Taxonomy, substantially analysis, motivations, challenges, recommendations and future direction, J. Medical Syst., vol. 43, p. 320, 2019.

[11]

S. Jabbar, H. Lloyd, M. Hammoudeh, B. Adebisi, and U. Raza, Blockchain-enabled supply chain: Analysis, challenges, and future directions, Multim. Syst., vol. 27, pp. 787–806, 2021.

[12]

S. Wan, M. Li, G. Liu, and C. Wang, Recent advances in consensus protocols for blockchain: A survey, Wirel. Networks, vol. 26, pp. 5579–5593, 2020.

[13]

A. Singh, G. Kumar, R. Saha, M. Conti, M. Alazab, and R. Thomas, A survey and taxonomy of consensus protocols for blockchains, J. Syst. Archit., vol. 127, p. 102503, 2022.

[14]

Q. Zhou, H. Huang, Z. Zheng, and J. Bian, Solutions to scalability of blockchain: A survey, IEEE Access, vol. 8, pp. 16440–16455, 2020.

[15]

R. Zhang, R. Xue, and L. Liu, Security and privacy on blockchain, ACM Comput. Surv., vol. 52, no. 3, pp. 1–34, 2019.

[16]

Q. Feng, D. He, S. Zeadally, M. K. Khan, and N. Kumar, A survey on privacy protection in blockchain system, J. Netw. Comput. Appl., vol. 126, pp. 45–58, 2019.

[17]

H. T. M. Gamage, H. D. Weerasinghe, and N. G. J. Dias, A survey on blockchain technology concepts, applications, and issues, SN Comput. Sci., vol. 1, p. 114, 2020.

[18]

R. Huo, S. Zeng, Z. Wang, J. Shang, W. Chen, T. Huang, S. Wang, F. R. Yu, and Y. Liu, A comprehensive survey on blockchain in industrial internet of things: Motivations, research progresses, and future challenges, IEEE Commun. Surv. Tutorials, vol. 24, no. 1, pp. 88–122, 2022.

[19]

C. Wang, X. Cheng, J. Li, Y. He, and K. Xiao, A survey: Applications of blockchain in the internet of vehicles, EURASIP J. Wirel. Commun. Netw., vol. 2021, p. 77, 2021.

[20]

M. B. Mollah, J. Zhao, D. Niyato, Y. L. Guan, C. Yuen, S. Sun, K. Lam, and L. H. Koh, Blockchain for the internet of vehicles towards intelligent transportation systems: A survey, IEEE Internet Things J., vol. 8, no. 6, pp. 4157–4185, 2021.

[21]

T. Alladi, V. Chamola, N. Sahu, V. Venkatesh, A. Goyal, and M. Guizani, A comprehensive survey on the applications of blockchain for securing vehicular networks, IEEE Commun. Surv. Tutorials, vol. 24, no. 2, pp. 1212–1239, 2022.

[22]

J. Zou, D. He, S. Zeadally, N. Kumar, H. Wang, and K. R. Choo, Integrated blockchain and cloud computing systems: A systematic survey, solutions, and challenges, ACM Comput. Surv., vol. 54, no. 8, pp. 1–36, 2022.

[23]

Z. Liao, X. Pang, J. Zhang, B. Xiong, and J. Wang, Blockchain on security and forensics management in edge computing for IoT: A comprehensive survey, IEEE Trans. Netw. Serv. Manag., vol. 19, no. 2, pp. 1159–1175, 2022.

[24]

D. Li, D. Han, T. Weng, Z. Zheng, H. Li, H. Liu, A. Castiglione, and K. Li, Blockchain for federated learning toward secure distributed machine learning systems: A systemic survey, Soft Comput., vol. 26, pp. 4423–4440, 2022.

[25]

D. C. Nguyen, M. Ding, Q. Pham, P. N. Pathirana, L. B. Le, A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, Federated learning meets blockchain in edge computing: Opportunities and challenges, IEEE Internet Things J., vol. 8, no. 16, pp. 12806–12825, 2021.

[26]

V. Sreerakhi, N. Balagopal, and A. Mohan, Transforming supply chain network and logistics using blockchain—A survey, Int. J. Bus. Inf. Syst., vol. 39, no. 2, pp. 193–218, 2022.

[27]

M. S. Rahman, M. A. Islam, M. A. Uddin, and G. Stea, A survey of blockchain-based IoT ehealthcare: Applications, research issues, and challenges, Internet of Things, vol. 19, p. 100551, 2022.

[28]

S. Shi, D. He, L. Li, N. Kumar, M. K. Khan, and K. R. Choo, Applications of blockchain in ensuring the security and privacy of electronic health record systems: A survey, Comput. Secur., vol. 97, p. 101966, 2020.

[29]

T. M. Hewa, M. Ylianttila, and M. Liyanage, Survey on blockchain based smart contracts: Applications, opportunities and challenges, J. Netw. Comput. Appl., vol. 177, p. 102857, 2021.

[30]

P. Sharma, R. Jindal, and D. B. Malaya, A review of blockchain-based applications and challenges, Wirel. Pers. Commun., vol. 123, no. 2, pp. 1201–1243, 2022.

[31]

A. G. Gad, D. T. Mosa, L. Abualigah, and A. A. Abohany, Emerging trends in blockchain technology and applications: A review and outlook, J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 9, pp. 6719–6742, 2022.

[32]
L. Lamport. Constructing digital signatures from a one-way function. Tech. rep. CSL-98, SRI International, Palo Alto, CA, USA, 1979.
[33]
R. C. Merkle, A digital signature based on a conventional encryption function, in Proc. Conference on the Theory and Application of Cryptographic Techniques, Santa Barbara, CA, USA, 1987, pp. 369–378.
DOI
[34]
D. D. F. Maesa, A. Marino, and L. Ricci, Uncovering the bitcoin blockchain: An analysis of the full users graph, in Proc. 2016 IEEE International Conference on Data Science and Advanced Analytics, Montreal, Canada, 2016, pp. 537–546.
[35]

D. D. F. Maesa, A. Marino, and L. Ricci, The bow tie structure of the bitcoin users graph, Appl. Netw. Sci., vol. 4, p. 56, 2019.

[36]
Y. Chen and J. Liu, Distributed community detection over blockchain networks based on structural entropy, in Proc. 2019 ACM International Symposium on Blockchain and Secure Critical Infrastructure, Auckland, New Zealand, 2019, pp. 3–12.
DOI
[37]
B. B. F. Pontiveros, M. Steichen, and R. State, Mint centrality: A centrality measure for the bitcoin transaction graph, in Proc. 2019 IEEE International Conference on Blockchain and Cryptocurrency, Seoul, Republic of Korea, 2019, pp. 159–162.
DOI
[38]
Y. Li, U. Islambekov, C. G. Akcora, E. Smirnova, Y. R. Gel, and M. Kantarcioglu, Dissecting ethereum blockchain analytics: What we learn from topology and geometry of ethereum graph? in Proc. 2020 SIAM Conference on Data Mining (SDM), Cincinnati, OH, USA, 2020, pp. 523–531.
DOI
[39]
R. Banno and K. Shudo, Simulating a blockchain network with simblock, in Proc. 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul, Republic of Korea, 2019, pp. 3–4.
[40]

L. Liu, W. Tsai, M. Z. A. Bhuiyan, and D. Yang, Automatic blockchain whitepapers analysis via heterogeneous graph neural network, J. Parallel Distributed Comput., vol. 145, pp. 1–12, 2020.

[41]
C. Feng and J. Niu, Selfish mining in ethereum, in Proc. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 2019, pp. 1306–1316.
DOI
[42]
F. Ritz and A. Zugenmaier, The impact of uncle rewards on selfish mining in ethereum, in Proc. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), London, UK, 2018, pp. 50–57.
DOI
[43]

H. Kang, X. Chang, R. Yang, J. V. Mišić, and V. B. Mišić, Understanding selfish mining in imperfect bitcoin and ethereum networks with extended forks, IEEE Trans. Netw. Serv. Manag., vol. 18, no. 3, pp. 3079–3091, 2021.

[44]
W. Chen, X. Guo, Z. Chen, Z. Zheng, and Y. Lu, Phishing scam detection on ethereum: Towards financial security for blockchain ecosystem, in Proc. 29th International Joint Conference on Artificial Intelligence (IJCAI), Yokohama, Japan, 2020, pp. 4506–4512.
DOI
[45]
C. Hou, M. Zhou, Y. Ji, P. Daian, F. Tramèr, G. Fanti, and A. Juels, SquirRL: Automating attack analysis on blockchain incentive mechanisms with deep reinforcement learning, presented at 28th Annual Network and Distributed System Security Symposium (NDSS), Virtual, 2021.
DOI
[46]
A. Kiayias, A. Russell, B. David, and R. Oliynykov, Ouroboros: A provably secure proof-of-stake blockchain protocol, in Proc. 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, 2017, pp. 357–388.
DOI
[47]

D. Larimer, Delegated proof-of-stake (dpos), Bitshare Whitepaper, vol. 81, p. 85, 2014.

[48]
F. Schuh and D. Larimer, Bitshares 2.0: General overview, http://docs.bitshares.org/downloads/bitshares-general.pdf, 2017.
[49]

Y. Huang, H. Wang, L. Wu, G. Tyson, X. Luo, R. Zhang, X. Liu, G. Huang, and X. Jiang, Understanding (mis)behavior on the EOSIO blockchain, Proc. ACM Meas. Anal. Comput. Syst., vol. 4, no. 2, pp. 1–28, 2020.

[50]

B. Xu, D. Luthra, Z. Cole, and N. Blakely, EOS: An architectural, performance, and economic analysis, Retrieved June, vol. 11, p. 2019, 2018.

[51]

B. Guidi, A. Michienzi, and L. Ricci, Steem blockchain: Mining the inner structure of the graph, IEEE Access, vol. 8, pp. 210251–210266, 2020.

[52]

Y. Sun, B. Yan, Y. Yao, and J. Yu, Dt-dpos: A delegated proof of stake consensus algorithm with dynamic trust, Procedia Computer Science, vol. 187, pp. 371–376, 2021.

[53]

J. Liu, M. Xie, S. Chen, C. Ma, and Q. Gong, An improved dpos consensus mechanism in blockchain based on PLTS for the smart autonomous multi-robot system, Inf. Sci., vol. 575, pp. 528–541, 2021.

[54]

F. Yang, W. Zhou, Q. Wu, R. Long, N. N. Xiong, and M. Zhou, Delegated proof of stake with downgrade: A secure and efficient blockchain consensus algorithm with downgrade mechanism, IEEE Access, vol. 7, pp. 118541–118555, 2019.

[55]
X. Fan and Q. Chai, Roll-DPoS: A randomized delegated proof of stake scheme for scalable blockchain-based internet of things systems, in Proc. 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, New York, NY, USA, 2018, pp. 482–484.
[56]
Y. Luo, Y. Chen, Q. Chen, and Q. Liang, A new election algorithm for dpos consensus mechanism in blockchain, in Proc. 2018 7th International Conference on Digital Home (ICDH), Guilin, China, 2018, pp. 116–120.
DOI
[57]

G. Xu, Y. Liu, and P. W. Khan, Improvement of the dpos consensus mechanism in blockchain based on vague sets, IEEE Trans. Ind. Informatics, vol. 16, no. 6, pp. 4252–4259, 2020.

[58]
M. Castro and B. Liskov, Practical byzantine fault tolerance, in Proc. Third Symposium on Operating Systems Design and Implementation, New Orleans, LA, USA, 1999, pp. 173–186.
DOI
[59]

Y. Li, L. Qiao, and Z. Lv, An optimized byzantine fault tolerance algorithm for consortium blockchain, Peer-to-Peer Netw. Appl., vol. 14, no. 5, pp. 2826–2839, 2021.

[60]

W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. A. Imran, A scalable multi-layer PBFT consensus for blockchain, IEEE Trans. Parallel Distributed Syst., vol. 32, no. 5, pp. 1146–1160, 2021.

[61]
L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert, and P. Saxena, SCP: A computationally-scalable byzantine consensus protocol for blockchains, http://eprint.iacr.org/2015/1168, 2015.
[62]

Z. Li, J. Huang, D. Gao, Y. Jiang, and L. Fan, ISCP: An improved blockchain consensus protocol, Int. J. Netw. Secur., vol. 21, no. 3, pp. 359–367, 2019.

[63]
M. J. Amiri, D. Agrawal, and A. E. Abbadi, Parblockchain: Leveraging transaction parallelism in permissioned blockchain systems, in Proc. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 2019, pp. 1337–1347.
[64]
F. Gai, B. Wang, W. Deng, and W. Peng, Proof of reputation: A reputation-based consensus protocol for peer-to-peer network, in Proc. 23rd International Conference on Database Systems for Advanced Application, Gold Coast, Australia, 2018, pp. 666–681.
DOI
[65]

F. Ayaz, Z. Sheng, D. Tian, and Y. L. Guan, A proof-of-quality-factor (PoQF)-based blockchain and edge computing for vehicular message dissemination, IEEE Access, vol. 8, no. 4, pp. 2468–2482, 2021.

[66]

H. Guo, W. Li, M. M. Nejad, and C. Shen, Proof-of-event recording system for autonomous vehicles: A blockchain-based solution, IEEE Access, vol. 8, pp. 182776–182786, 2020.

[67]
L. Bahri and S. Girdzijauskas, Trust mends blockchains: Living up to expectations, in Proc. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 2019, pp. 1358–1368.
DOI
[68]
H. Dang, T. T. A. Dinh, D. Loghin, E. Chang, Q. Lin, and B. C. Ooi, Towards scaling blockchain systems via sharding, in Proc. 2019 International Conference on Management of Data, Amsterdam, the Netherlands, 2019, pp. 123–140.
DOI
[69]
L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, A secure sharding protocol for open blockchains, in Proc. 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016, pp. 17–30.
DOI
[70]
R. Han, J. Yu, H. Lin, S. Chen, and P. J. Esteves-Veríssimo, On the security and performance of blockchain sharding, https://eprint.iacr.org/2021/1276, 2021.
DOI
[71]
M. Zamani, M. Movahedi, and M. Raykova, Rapidchain: Scaling blockchain via full sharding, in Proc. 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, Canada, 2018, pp. 931–948.
[72]
Y. Xu and Y. Huang, An n/2 byzantine node tolerate blockchain sharding approach, in Proc. 35th ACM Symposium on Applied Computing, Brno, Czech Republic, 2020, pp. 349–352.
DOI
[73]
J. Zhang, Z. Hong, X. Qiu, Y. Zhan, S. Guo, and W. Chen, Skychain: A deep reinforcement learning-empowered dynamic blockchain sharding system, in Proc. 49th International Conference on Parallel Processing, Edmonton, Canada, 2020, pp. 1–11.
DOI
[74]
E. Bandara, S. Shetty, A. Rahman, R. Mukkamala, and X. Liang, Moose: A scalable blockchain architecture for 5G enabled IoT with sharding and network slicing, in Proc. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 2022, pp. 1194–1199.
DOI
[75]
E. Madill, B. Nguyen, C. K. Leung, and S. Rouhani, ScaleSFL: A sharding solution for blockchain-based federated learning, in Proc. 4th ACM International Symposium on Blockchain and Secure Critical Infrastructure, Nagasaki, Japan, 2022, pp. 95–106.
DOI
[76]

Y. Xu and Y. Huang, Segment blockchain: A size reduced storage mechanism for blockchain, IEEE Access, vol. 8, pp. 17434–17441, 2020.

[77]

X. Qi, Z. Zhang, C. Jin, and A. Zhou, A reliable storage partition for permissioned blockchain, IEEE Trans. Knowl. Data Eng., vol. 33, no. 1, pp. 14–27, 2021.

[78]

X. Wang, X. Jiang, Y. Liu, J. Wang, and Y. Sun, Data propagation for low latency blockchain systems, IEEE Journal on Selected Areas in Communications, vol. 40, no. 12, pp. 3631–3644, 2022.

[79]
C. Decker and R. Wattenhofer, Information propagation in the bitcoin network, in Proc. 13th IEEE International Conference on Peer-to-Peer Computing, Trento, Italy, 2013, pp. 1–10.
[80]
K. Ayinala, B. Choi, and S. Song, Pichu: Accelerating block broadcasting in blockchain networks with pipelining and chunking, arXiv preprint arXiv: 2101.08212, 2021.
DOI
[81]
D. Ding, X. Jiang, J. Wang, H. Wang, X. Zhang, and Y. Sun, Txilm: Lossy block compression with salted short hashing, arXiv preprint arXiv: 1906.06500, 2019.
[82]

B. Yu, X. Li, and H. Zhao, PoW-BC: A pow consensus protocol based on block compression, KSII Transactions on Internet and Information Systems, vol. 15, no. 4, pp. 1389–1408, 2021.

[83]
P. Deutsch, DEFLATE compressed data format specification version 1.3, RFC 1951, doi: 10.17487/RFC1951.
[84]

I. Stoica, R. T. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan, Chord: A scalable peer-to-peer lookup service for internet applications, ACM SIGCOMM Computer Communication Review, vol. 31, no. 4, pp. 149–160, 2001.

[85]

S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker, A scalable content-addressable network, ACM SIGCOMM Computer Communication Review, vol. 31, no. 4, pp. 161–172, 2001.

[86]

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz, Tapestry: A resilient global-scale overlay for service deployment, IEEE J. Sel. Areas Commun., vol. 22, no. 1, pp. 41–53, 2004.

[87]
A. P. Ozisik, G. Andresen, B. N. Levine, D. Tapp, G. Bissias, and S. Katkuri, Graphene: Efficient interactive set reconciliation applied to blockchain propagation, in Proc. ACM Special Interest Group on Data Communication, Beijing, China, 2019, pp. 303–317.
DOI
[88]
E. Rohrer and F. Tschorsch, Kadcast: A structured approach to broadcast in blockchain networks, in Proc. 1st ACM Conference on Advances in Financial Technologies, Zurich, Switzerland, 2019, pp. 199–213.
DOI
[89]
P. Maymounkov and D. Mazières, Kademlia: A peer-to-peer information system based on the XOR metric, in Proc. First International Workshop on Peer-to-Peer Systems, Cambridge, MA, USA, 2002, pp. 53–65.
DOI
[90]
Y. Mao, S. Deb, S. B. Venkatakrishnan, S. Kannan, and K. Srinivasan, Perigee: Efficient peer-to-peer network design for blockchains, in Proc. 39th Symposium on Principles of Distributed Computing, Virtual event, Italy, 2020, pp. 428–437.
DOI
[91]
L. Eckey, S. Faust, and J. Loss, Efficient algorithms for broadcast and consensus based on proofs of work, http://eprint.iacr.org/2017/915, 2017.
DOI
[92]
Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, Algorand: Scaling byzantine agreements for cryptocurrencies, in Proc. 26th Symposium on Operating Systems Principles, Shanghai, China, 2017, pp. 51–68.
DOI
[93]
V. K. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, Prism: Deconstructing the blockchain to approach physical limits, in Proc. 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 2019, pp. 585–602.
[94]
A. J. Al-Musharaf, S. M. Al-Alak, and H. M. Al-Mashhadi, Improving blockchain consensus mechanism via network clusters, in Proc. 2021 1st Babylon International Conference on Information Technology and Science (BICITS), Babil, Iraq, 2021, pp. 293–298.
DOI
[95]

H. Tran-Dang, N. Krommenacker, P. Charpentier, and D. S. Kim, The internet of things for logistics: Perspectives, application review, and challenges, IETE Technical Review, vol. 39, no. 1, pp. 93–121, 2022.

[96]

A. Alkhateeb, C. Catal, G. Kar, and A. Mishra, Hybrid blockchain platforms for the internet of things (IoT): A systematic literature review, Sensors, vol. 22, no. 4, p. 1304, 2022.

[97]

O. Novo, Blockchain meets IoT: An architecture for scalable access management in IoT, IEEE Internet Things J., vol. 5, no. 2, pp. 1184–1195, 2018.

[98]
J. Marchang, G. Ibbotson, and P. Wheway, Will blockchain technology become a reality in sensor networks? in Proc. 2019 Wireless Days, Manchester, UK, 2019, pp. 1–4.
DOI
[99]

S. Aggarwal, R. Chaudhary, G. S. Aujla, N. Kumar, K. R. Choo, and A. Y. Zomaya, Blockchain for smart communities: Applications, challenges and opportunities, J. Netw. Comput. Appl., vol. 144, pp. 13–48, 2019.

[100]
J. Huang, L. Kong, G. Chen, L. Cheng, K. Wu, and X. Liu, B-IoT: Blockchain driven internet of things with credit-based consensus mechanism, in Proc. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 2019, pp. 1348–1357.
DOI
[101]

S. Biswas, K. Sharif, F. Li, S. Maharjan, S. P. Mohanty, and Y. Wang, PoBT: A lightweight consensus algorithm for scalable IoT business blockchain, IEEE Internet Things J., vol. 7, no. 3, pp. 2343–2355, 2020.

[102]

E. K. Wang, Z. Liang, C. Chen, S. Kumari, and M. K. Khan, PoRX: A reputation incentive scheme for blockchain consensus of IIoT, Future Gener. Comput. Syst., vol. 102, pp. 140–151, 2020.

[103]

Z. Ai and W. Cui, A proof-of-transactions blockchain consensus protocol for large-scale IoT, IEEE Internet Things J., vol. 9, no. 11, pp. 7931–7943, 2022.

[104]

A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, LSB: A lightweight scalable blockchain for IoT security and anonymity, J. Parallel Distributed Comput., vol. 134, pp. 180–197, 2019.

[105]

S. Biswas, K. Sharif, F. Li, B. Nour, and Y. Wang, An incentive mechanism for building a secure blockchain-based internet of things, IEEE Internet Things J., vol. 6, no. 3, pp. 4650–4659, 2019.

[106]

X. Ding, J. Guo, D. Li, and W. Wu, An incentive mechanism for building a secure blockchain-based internet of things, IEEE Trans. Netw. Sci. Eng., vol. 8, no. 1, pp. 477–487, 2021.

[107]

S. Khan, W. Lee, and S. O. Hwang, Aechain: A lightweight blockchain for IoT applications, IEEE Consumer Electron. Mag., vol. 11, no. 2, pp. 64–76, 2022.

[108]

C. Zhang, L. Zhu, and C. Xu, BPAF: Blockchain-enabled reliable and privacy-preserving authentication for fog-based IoT devices, IEEE Internet Things J., vol. 11, no. 2, pp. 88–96, 2022.

[109]

J. Guo, X. Ding, and W. Wu, A blockchain-enabled ecosystem for distributed electricity trading in smart city, IEEE Internet Things J., vol. 8, no. 3, pp. 2040–2050, 2021.

[110]

J. Guo, X. Ding, and W. Wu, An architecture for distributed energies trading in byzantine-based blockchains, IEEE Trans. Green Commun. Netw., vol. 6, no. 2, pp. 1216–1230, 2022.

[111]

T. Li, Y. Fang, Z. Jian, X. Xie, Y. Lu, and G. Wang, ATOM: Architectural support and optimization mechanism for smart contract fast update and execution in blockchain-based IoT, IEEE Internet Things J., vol. 9, no. 11, pp. 7959–7971, 2022.

[112]

J. Zhou, G. Feng, and Y. Wang, Optimal deployment mechanism of blockchain in resource-constrained IoT systems, IEEE Internet Things J., vol. 9, no. 11, pp. 8168–8177, 2022.

[113]

L. Yang, M. Li, P. Si, R. Yang, E. Sun, and Y. Zhang, Energy-efficient resource allocation for blockchain-enabled industrial internet of things with deep reinforcement learning, IEEE Internet Things J., vol. 8, no. 4, pp. 2318–2329, 2021.

[114]

Y. Wu, Z. Wang, Y. Ma, and V. C. M. Leung, Deep reinforcement learning for blockchain in industrial IoT: A survey, Comput. Networks, vol. 191, p. 108004, 2021.

[115]

M. Li, F. R. Yu, P. Si, W. Wu, and Y. Zhang, Resource optimization for delay-tolerant data in blockchain-enabled IoT with edge computing: A deep reinforcement learning approach, IEEE Internet Things J., vol. 7, no. 10, pp. 9399–9412, 2020.

[116]

M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song, Performance optimization for blockchain-enabled industrial internet of things (IIoT) systems: A deep reinforcement learning approach, IEEE Trans. Ind. Informatics, vol. 15, no. 6, pp. 3559–3570, 2019.

[117]

J. Yun, Y. Goh, and J. Chung, DQN-based optimization framework for secure sharded blockchain systems, IEEE Trans. Ind. Informatics, vol. 8, no. 2, pp. 708–722, 2021.

[118]
X. Ding, J. Guo, D. Li, and W. Wu, Pricing and budget allocation for IoT blockchain with edge computing, IEEE Transactions on Cloud Computing, doi: 10.1109/TCC.2022.3150766.
DOI
[119]
A. K. V, A. K. Tyagi, and S. P. Kumar, Blockchain technology for securing internet of vehicle: Issues and challenges, in Proc. 2022 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2022, pp. 1–6.
DOI
[120]

J. Kang, Z. Xiong, D. Niyato, D. Ye, D. I. Kim, and J. Zhao, Toward secure blockchain-enabled internet of vehicles: Optimizing consensus management using reputation and contract theory, IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2906–2920, 2019.

[121]

Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. M. Leung, Blockchain-based decentralized trust management in vehicular networks, IEEE Internet Things J., vol. 6, no. 2, pp. 1495–1505, 2019.

[122]
L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, On security analysis of proof-of-elapsed-time (PoET), in Proc. 19th International Symposium on Stabilization, Safety, and Security of Distributed Systems, Boston, MA, USA, 2017, pp. 282–297.
DOI
[123]

M. Cebe, E. Erdin, K. Akkaya, H. Aksu, and S. Uluagac, Block4forensic: An integrated lightweight blockchain framework for forensics applications of connected vehicles, IEEE Commun. Mag., vol. 56, no. 10, pp. 50–57, 2018.

[124]

L. Zhang, M. Luo, J. Li, M. H. Au, K. R. Choo, T. Chen, and S. Tian, Blockchain based secure data sharing system for internet of vehicles: A position paper, Veh. Commun., vol. 16, pp. 85–93, 2019.

[125]

L. Luo, J. Feng, H. Yu, and G. Sun, Blockchain-enabled two-way auction mechanism for electricity trading in internet of electric vehicles, IEEE Internet Things J., vol. 9, no. 11, pp. 8105–8118, 2022.

[126]

H. N. Abishu, A. M. Seid, Y. H. Yacob, T. Ayall, G. Sun, and G. Liu, Consensus mechanism for blockchain-enabled vehicle-to-vehicle energy trading in the internet of electric vehicles, IEEE Trans. Veh. Technol., vol. 71, no. 1, pp. 946–960, 2022.

[127]
S. Cho, N. Chen, and X. Hua, Developing a vehicle networking platform based on blockchain technology, in Proc. Second International Conference on Blockchain, San Diego, CA, USA, 2019, pp. 186–201.
DOI
[128]

Q. Wang, T. Ji, Y. Guo, L. Yu, X. Chen, and P. Li, Trafficchain: A blockchain-based secure and privacy-preserving traffic map, IEEE Access, vol. 8, pp. 60598–60612, 2020.

[129]

B. Yin, Y. Wu, T. Hu, J. Dong, and Z. Jiang, An efficient collaboration and incentive mechanism for internet of vehicles (IoV) with secured information exchange based on blockchains, IEEE Internet Things J., vol. 7, no. 3, pp. 1582–1593, 2020.

[130]

Y. Hui, Y. Huang, Z. Su, T. H. Luan, N. Cheng, X. Xiao, and G. Ding, BCC: Blockchain-based collaborative rowdsensing in autonomous vehicular networks, IEEE Internet Things J., vol. 9, no. 6, pp. 4518–4532, 2022.

[131]

S. Wang, S. Sun, X. Wang, Z. Ning, and J. J. P. C. Rodrigues, Secure crowdsensing in 5G internet of vehicles: When deep reinforcement learning meets blockchain, IEEE Consumer Electron. Mag., vol. 10, no. 5, pp. 72–81, 2021.

[132]
S. Kim and A. S. Ibrahim, Byzantine-fault-tolerant consensus via reinforcement learning for permissioned blockchain-empowered V2X network, IEEE Transactions on Intelligent Vehicles, doi: 10.1109/TIV.2022.3168575.
DOI
[133]
M. Liu, Y. Teng, F. R. Yu, V. C. M. Leung, and M. Song, Deep reinforcement learning based performance optimization in blockchain-enabled internet of vehicle, in Proc. 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019, pp. 1–6.
DOI
[134]
S. Jiang, X. Li, and J. Wu, Hierarchical edge-cloud computing for mobile blockchain mining game, in Proc. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 2019, pp. 1327–1336.
DOI
[135]

G. Qu, N. Cui, H. Wu, R. Li, and Y. Ding, ChainFL: A simulation platform for joint federated learning and blockchain in edge/cloud computing environments, IEEE Trans. Ind. Informatics, vol. 18, no. 5, pp. 3572–3581, 2022.

[136]

Z. Hu, H. Gao, T. Wang, D. Han, and Y. Lu, Joint optimization for mobile edge computing-enabled blockchain systems: A deep reinforcement learning approach, Sensors, vol. 22, no. 9, p. 3217, 2022.

[137]

J. Feng, F. R. Yu, Q. Pei, X. Chu, J. Du, and L. Zhu, Cooperative computation offloading and resource allocation for blockchain-enabled mobile-edge computing: A deep reinforcement learning approach, IEEE Internet Things J., vol. 7, no. 7, pp. 6214–6228, 2020.

[138]

Y. Zuo, S. Jin, S. Zhang, and Y. Zhang, Blockchain storage and computation offloading for cooperative mobile-edge computing, IEEE Internet Things J., vol. 8, no. 11, pp. 9084–9098, 2021.

[139]

G. Cheng, Y. Chen, S. Deng, H. Gao, and J. Yin, A blockchain-based mutual authentication scheme for collaborative edge computing, IEEE Trans. Comput. Soc. Syst., vol. 9, no. 1, pp. 146–158, 2022.

[140]

L. Xiao, Y. Ding, D. Jiang, J. Huang, D. Wang, J. Li, and H. V. Poor, A reinforcement learning and blockchain-based trust mechanism for edge networks, IEEE Trans. Commun., vol. 68, no. 9, pp. 5460–5470, 2020.

[141]

Y. Liu, X. Guan, Y. Peng, H. Chen, T. Ohtsuki, and Z. Han, Blockchain-based task offloading for edge computing on low-quality data via distributed learning in the internet of energy, IEEE J. Sel. Areas Commun., vol. 40, no. 2, pp. 657–676, 2022.

[142]
G. Baranwal and D. Kumar, PoSP: A novel proof of service placement in blockchain-based edge computing, in Proc. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Pisa, Italy, 2022, pp. 18–21.
DOI
[143]

S. R. Maskey, S. Badsha, S. Sengupta, and I. Khalil, Reputation-based miner node selection in blockchain-based vehicular edge computing, IEEE Consumer Electron. Mag., vol. 10, no. 5, pp. 14–22, 2021.

[144]

E. Balistri, F. Casellato, S. Collura, C. Giannelli, G. Riberto, and C. Stefanelli, Design guidelines and a prototype implementation for cyber-resiliency in IT/OT scenarios based on blockchain and edge computing, IEEE Internet Things J., vol. 9, no. 7, pp. 4816–4832, 2022.

[145]

C. Li, S. Liang, J. Zhang, Q. Wang, and Y. Luo, Blockchain-based data trading in edge-cloud computing environment, Inf. Process. Manag., vol. 59, no. 1, p. 102786, 2022.

[146]

L. Yuan, Q. He, F. Chen, J. Zhang, L. Qi, X. Xu, Y. Xiang, and Y. Yang, CSEdge: Enabling collaborative edge storage for multi-access edge computing based on blockchain, IEEE Trans. Parallel Distributed Syst., vol. 33, no. 8, pp. 1873–1887, 2022.

[147]
J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, Federated learning: Strategies for improving communication efficiency, arXiv preprint arXiv: 1610.05492, 2016.
[148]
A. Goel, A. Agarwal, M. Vatsa, R. Singh, and N. Ratha, Deepring: Protecting deep neural network with blockchain, in Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 2019, pp. 2821–2828.
DOI
[149]

Y. Fu, F. R. Yu, C. Li, T. H. Luan, and Y. Zhang, Vehicular blockchain-based collective learning for connected and autonomous vehicles, IEEE Wirel. Commun., vol. 27, no. 2, pp. 197–203, 2020.

[150]

J. Sun, Y. Wu, S. Wang, Y. Fu, and X. Chang, Permissioned blockchain frame for secure federated learning, IEEE Commun. Lett., vol. 26, no. 1, pp. 13–17, 2022.

[151]
P. Ramanan and K. Nakayama, BAFFLE: Blockchain based aggregator free federated learning, in Proc. 2020 IEEE International Conference on Blockchain, Rhodes, Greece, 2020, pp. 72–81.
DOI
[152]

Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, Blockchain and federated learning for privacy-preserved data sharing in industrial IoT, IEEE Trans. Ind. Informatics, vol. 16, no. 6, pp. 4177–4186, 2020.

[153]

Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, Communication-efficient federated learning and permissioned blockchain for digital twin edge networks, IEEE Internet Things J., vol. 8, no. 4, pp. 2276–2288, 2021.

[154]

Z. Peng, J. Xu, X. Chu, S. Gao, Y. Yao, R. Gu, and Y. Tang, VFChain: Enabling verifiable and auditable federated learning via blockchain systems, IEEE Trans. Netw. Sci. Eng., vol. 9, no. 1, pp. 173–186, 2022.

[155]

Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, A blockchain-based decentralized federated learning framework with committee consensus, IEEE Netw., vol. 35, no. 1, pp. 234–241, 2021.

[156]

X. Qu, S. Wang, Q. Hu, and X. Cheng, Proof of federated learning: A novel energy-recycling consensus algorithm, IEEE Trans. Parallel Distributed Syst., vol. 32, no. 8, pp. 2074–2085, 2021.

[157]

T. Rückel, J. Sedlmeir, and P. Hofmann, Fairness, integrity, and privacy in a scalable blockchain-based federated learning system, Comput. Networks, vol. 202, p. 108621, 2022.

[158]

L. Gao, L. Li, Y. Chen, C. Xu, and M. Xu, FGFL: A blockchain-based fair incentive governor for federated learning, J. Parallel Distributed Comput., vol. 163, pp. 283–299, 2022.

[159]

Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles, IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4298–4311, 2020.

[160]

L. Feng, Y. Zhao, S. Guo, X. Qiu, W. Li, and P. Yu, BAFL: A blockchain-based asynchronous federated learning framework, IEEE Trans. Computers, vol. 71, no. 5, pp. 1092–1103, 2022.

[161]

R. Wang and W. Tsai, Asynchronous federated learning system based on permissioned blockchains, Sensors, vol. 22, no. 4, p. 1672, 2022.

[162]

B. Jia, X. Zhang, J. Liu, Y. Zhang, K. Huang, and Y. Liang, Blockchain-enabled federated learning data protection aggregation scheme with differential privacy and homomorphic encryption in IIoT, IEEE Trans. Ind. Informatics, vol. 18, no. 6, pp. 4049–4058, 2022.

[163]

Y. Zhao, J. Zhao, L. Jiang, R. Tan, D. Niyato, Z. Li, L. Lyu, and Y. Liu, Privacy-preserving blockchain-based federated learning for IoT devices, IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1817–1829, 2021.

[164]

S. Otoum, I. A. Ridhawi, and H. T. Mouftah, Securing critical IoT infrastructures with blockchain-supported federated learning, IEEE Internet Things J., vol. 9, no. 4, pp. 2592–2601, 2022.

[165]

L. Feng, Z. Yang, S. Guo, X. Qiu, W. Li, and P. Yu, Two-layered blockchain architecture for federated learning over the mobile edge network, IEEE Netw., vol. 36, no. 1, pp. 45–51, 2022.

[166]

F. Ayaz, Z. Sheng, D. Tian, and Y. L. Guan, A blockchain based federated learning for message dissemination in vehicular networks, IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 1927–1940, 2022.

[167]
M. Mettler, Blockchain technology in healthcare: The revolution starts here, in Proc. 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services, Munich, Germany, 2016, pp. 1–3.
[168]

T. McGhin, K. -K. R. Choo, C. Z. Liu, and D. He, Blockchain in healthcare applications: Research challenges and opportunities, J. Netw. Comput. Appl., vol. 135, pp. 62–75, 2019.

[169]

I. Yaqoob, K. Salah, R. Jayaraman, and Y. Al-Hammadi, Blockchain for healthcare data management: Opportunities, challenges, and future recommendations, Neural Computing and Applications, vol. 34, pp. 11475–11490, 2022.

[170]

X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang, Healthcare data gateways: Found healthcare intelligence on blockchain with novel privacy risk control, J. Medical Syst., vol. 40, no. 10, p. 218, 2016.

[171]

C. C. Agbo, Q. H. Mahmoud, and J. M. Eklund, Blockchain technology in healthcare: A systematic review, Healthcare, vol. 7, no. 2, p. 56, 2019.

[172]

A. Haleem, M. Javaid, R. P. Singh, R. Suman, and S. Rab, Blockchain technology applications in healthcare: An overview, International Journal of Intelligent Networks, vol. 2, pp. 130–139, 2021.

[173]
S. Rahmadika and K. -H. Rhee, Blockchain technology for providing an architecture model of decentralized personal health information, International Journal of Engineering Business Management, doi: 10.1177/1847979018790589.
DOI
[174]

V. Jaiman and V. Urovi, A consent model for blockchain-based health data sharing platforms, IEEE Access, vol. 8, pp. 143734–143745, 2020.

[175]
L. Liu, X. Li, M. H. Au, Z. Fan, and X. Meng, Metadata privacy preservation for blockchain-based healthcare systems, in Proc. 27th International Conference on Database Systems for Advanced Applications, Virtual event, 2022, pp. 404–412.
[176]
M. Soni and D. K. Singh, Withdrawn: Blockchain-based security & privacy for biomedical and healthcare information exchange systems, Materials Today: Proceedings, doi: 10.1016/j.matpr.2021.02.094.
DOI
[177]

B. Zaabar, O. Cheikhrouhou, F. Jamil, M. Ammi, and M. Abid, Healthblock: A secure blockchain-based healthcare data management system, Comput. Networks, vol. 200, p. 108500, 2021.

[178]

P. Bhattacharya, S. Tanwar, U. Bodkhe, S. Tyagi, and N. Kumar, Bindaas: Blockchain-based deep-learning as-a-service in healthcare 4.0 applications, IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1242–1255, 2021.

[179]

G. Zhang, Z. Yang, and W. Liu, Blockchain-based privacy preserving e-health system for healthcare data in cloud, Comput. Networks, vol. 203, p. 108586, 2022.

[180]

U. Chelladurai and S. Pandian, A novel blockchain based electronic health record automation system for healthcare, J. Ambient Intell. Humaniz. Comput., vol. 13, no. 1, pp. 693–703, 2022.

[181]

G. Wu, S. Wang, Z. Ning, and B. Zhu, Privacy-preserved electronic medical record exchanging and sharing: A blockchain-based smart healthcare system, IEEE J. Biomed. Health Informatics, vol. 26, no. 5, pp. 1917–1927, 2022.

[182]
W. Liu, Q. Yu, Z. Li, Z. Li, Y. Su, and J. Zhou, A blockchain-based system for anti-fraud of healthcare insurance, in Proc. 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 2019, pp. 1264–1268.
DOI
[183]
J. C. Mendoza-Tello, T. Mendoza-Tello, and H. Mora, Blockchain as a healthcare insurance fraud detection tool, in Proc. Research and Innovation Forum 2020—Disruptive Technologies in Times of Change, Athens, Greece, 2020, pp. 545–552.
DOI
[184]
M. J. H. Faruk, H. Shahriar, M. Valero, S. Sneha, S. I. Ahamed, and M. Rahman, Towards blockchain-based secure data management for remote patient monitoring, in Proc. 2021 IEEE International Conference on Digital Health (ICDH), Chicago, IL, USA, 2021, pp. 299–308.
DOI
[185]
C. Pighini, A. Vezzoni, S. Mainini, A. G. Migliavacca, A. Montanari, M. R. Guarneri, E. G. Caiani, and A. Cesareo, Syncare: An innovative remote patient monitoring system secured by cryptography and blockchain, in Proc. 16th IFIP WG 9.2, 9.6/11.7, 11.6/SIG 9.2. 2 International Summer School on Privacy and Identity 2021, Virtual event, 2021, pp. 73–89.
DOI
[186]

D. R. Wong, S. Bhattacharya, and A. J. Butte, Prototype of running clinical trials in an untrustworthy environment using blockchain, Nature Communications, vol. 10, no. 1, p. 917, 2019.

[187]

G. Albanese, J. -P. Calbimonte, M. Schumacher, and D. Calvaresi, Dynamic consent management for clinical trials via private blockchain technology, J. Ambient Intell. Humaniz. Comput., vol. 11, no. 11, pp. 4909–4926, 2020.

[188]
M. Uddin, K. Salah, R. Jayaraman, S. Pesic, and S. Ellahham, Blockchain for drug traceability: Architectures and open challenges, Health Informatics J., doi: 10.1177/14604582211011228.
DOI
[189]

A. Musamih, K. Salah, R. Jayaraman, J. Arshad, M. Debe, Y. Al-Hammadi, and S. Ellahham, A blockchain-based approach for drug traceability in healthcare supply chain, IEEE Access, vol. 9, pp. 9728–9743, 2021.

[190]
E. K. Kambilo, H. B. Zghal, C. G. Guegan, V. Stankovski, P. Kochovski, and D. Vodislav, A blockchain-based framework for drug traceability: Chaindrugtrac, in Proc. 37th ACM/SIGAPP Symposium on Applied Computing, Virtual event, 2022, pp. 1900–1907.
DOI
[191]
K. Abbas, M. Afaq, T. Ahmed Khan, and W. Song, A blockchain and machine learning-based drug supply chain management and recommendation system for smart pharmaceutical industry, Electronics, vol. 9, no. 5, p. 852, 2020.
[192]

S. Singh, S. Rathore, O. Alfarraj, A. Tolba, and B. Yoon, A framework for privacy-preservation of IoT healthcare data using federated learning and blockchain technology, Future Gener. Comput. Syst., vol. 129, pp. 380–388, 2022.

[193]

A. Ali, M. A. Almaiah, F. Hajjej, M. F. Pasha, O. H. Fang, R. Khan, J. Teo, and M. Zakarya, An industrial IoT-based blockchain-enabled secure searchable encryption approach for healthcare systems using neural network, Sensors, vol. 22, no. 2, p. 572, 2022.

[194]

K. M. Hossein, M. E. Esmaeili, T. Dargahi, A. Khonsari, and M. Conti, Bchealth: A novel blockchain-based privacypreserving architecture for IoT healthcare applications, Comput. Commun., vol. 180, pp. 31–47, 2021.

[195]
S. Aich, N. K. Sinai, S. Kumar, M. Ali, Y. R. Choi, M. -I. Joo, and H. -C. Kim, Protecting personal healthcare record using blockchain & federated learning technologies, in Proc. 24th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 2022, pp. 109–112.
[196]
M. Torky, A. Darwish, and A. E. Hassanien, Blockchain use cases for COVID-19: Management, surveillance, tracking and security, in Digital Transformation and Emerging Technologies for Fighting COVID-19 Pandemic: Innovative Approaches, A. E. Hassanien and A. Darwish, eds. Cham, Switzerland: Springer, 2021, pp. 261–274.
DOI
[197]

S. Yao, P. Jing, P. Li, and J. Chen, A multi-dimension traceable privacy-preserving prevention and control scheme of the COVID-19 epidemic based on blockchain, Connect. Sci., vol. 34, no. 1, pp. 1654–1677, 2022.

[198]

L. Tan, K. Yu, N. Shi, C. Yang, W. Wei, and H. Lu, Towards secure and privacy-preserving data sharing for COVID-19 medical records: A blockchain-empowered approach, IEEE Trans. Netw. Sci. Eng., vol. 9, no. 1, pp. 271–281, 2022.

[199]

B. Aslan and K. Atasen, COVID-19 information sharing with blockchain, Inf. Technol. Control., vol. 50, no. 4, pp. 674–685, 2021.

[200]

A. Abid, S. Cheikhrouhou, S. Kallel, and M. Jmaiel, Novidchain: Blockchain-based privacy-preserving platform for COVID-19 test/vaccine certificates, Softw. Pract. Exp., vol. 52, no. 4, pp. 841–867, 2022.

[201]

S. Tahir, H. Tahir, A. Sajjad, M. Rajarajan, and F. Khan, Privacy-preserving COVID-19 contact tracing using blockchain, J. Commun. Networks, vol. 23, no. 5, pp. 360–373, 2021.

[202]

L. Ricci, D. D. F. Maesa, A. Favenza, and E. Ferro, Blockchains for COVID-19 contact tracing and vaccine support: A systematic review, IEEE Access, vol. 9, pp. 37936–37950, 2021.

[203]
M. Kassab and G. Destefanis, Blockchain and contact tracing applications for COVID-19: The opportunity and the challenges, in Proc. 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA, 2021, pp. 723–730.
DOI
[204]

H. Xu, L. Zhang, O. Onireti, Y. Fang, W. J. Buchanan, and M. A. Imran, Beeptrace: Blockchain-enabled privacy-preserving contact tracing for COVID-19 pandemic and beyond, IEEE Internet Things J., vol. 8, no. 5, pp. 3915–3929, 2021.

[205]
M. M. Arifeen, A. A. Mamun, M. S. Kaiser, and M. Mahmud, Blockchain-enable contact tracing for preserving user privacy during COVID-19 outbreak, Preprints, doi: 10.20944/preprints202007.0502.v1.
DOI
[206]

H. Choudhury, B. Goswami, and S. K. Gurung, COVIDchain: An anonymity preserving blockchain based framework for protection against COVID-19, Inf. Secur. J. A Glob. Perspect., vol. 30, no. 5, pp. 257–280, 2021.

[207]

H. R. Hasan, K. Salah, R. Jayaraman, I. Yaqoob, M. A. Omar, and S. Ellahham, COVID-19 contact tracing using blockchain, IEEE Access, vol. 9, pp. 62956–62971, 2021.

[208]

M. Torky, E. Goda, V. Snasel, and A. E. Hassanien, COVID-19 contact tracing and detection-based on blockchain technology, Informatics, vol. 8, no. 4, p. 72, 2021.

[209]
Z. Peng, C. Xu, H. Wang, J. Huang, J. Xu, and X. Chu, P2B-trace: Privacy-preserving blockchain-based contact tracing to combat pandemics, in Proc. 2021 International Conference on Management of Data, Virtual event, China, 2021, pp. 2389–2393.
DOI
[210]

Naren, A. Tahiliani, V. Hassija, V. Chamola, S. S. Kanhere, and M. Guizani, Privacy-preserving and incentivized contact tracing for COVID-19 using blockchain, IEEE Internet Things Mag., vol. 4, no. 3, pp. 72–79, 2021.

[211]

W. Lv, S. Wu, C. Jiang, Y. Cui, X. Qiu, and Y. Zhang, Towards large-scale and privacy-preserving contact tracing in COVID-19 pandemic: A blockchain perspective, IEEE Trans. Netw. Sci. Eng., vol. 9, no. 1, pp. 282–298, 2022.

[212]

S. A. Alansari, M. M. Badr, M. M. E. A. Mahmoud, W. Alasmary, F. Alsolami, and A. M. Ali, Efficient and privacy-preserving infection control system for COVID-19-like pandemics using blockchain, IEEE Internet Things J., vol. 9, no. 4, pp. 2744–2760, 2022.

[213]

M. F. Rotbi, S. Motahhir, and A. E. Ghzizal, Blockchain technology for a safe and transparent COVID-19 vaccination, J. ICT Stand., vol. 10, no. 2, pp. 125–144, 2022.

[214]

A. Musamih, R. Jayaraman, K. Salah, H. R. Hasan, I. Yaqoob, and Y. Al-Hammadi, Blockchain-based solution for distribution and delivery of COVID-19 vaccines, IEEE Access, vol. 9, pp. 71372–71387, 2021.

[215]

G. Lax, A. Russo, and L. S. Fascì, A blockchain-based approach for matching desired and real privacy settings of social network users, Inf. Sci., vol. 557, pp. 220–235, 2021.

[216]

B. Guidi, When blockchain meets online social networks, Pervasive Mob. Comput., vol. 62, p. 101131, 2020.

[217]

L. Jiang and X. Zhang, BCOSN: A blockchain-based decentralized online social network, IEEE Trans. Comput. Soc. Syst., vol. 6, no. 6, pp. 1454–1466, 2019.

[218]

S. Zhang, T. Yao, V. K. A. Sandor, T. Weng, W. Liang, and J. Su, A novel blockchain-based privacy-preserving framework for online social networks, Connect. Sci., vol. 33, no. 3, pp. 555–575, 2021.

[219]

Y. Chen, H. Xie, K. Lv, S. Wei, and C. Hu, DEPLEST: A blockchain-based privacy-preserving distributed database toward user behaviors in social networks, Inf. Sci., vol. 501, pp. 100–117, 2019.

[220]
H. H. Nguyen, D. Bozhkov, Z. Ahmadi, N. Nguyen, and T. Doan, SoChainDB: A database for storing and retrieving blockchain-powered social network data, in Proc. 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 2022, pp. 3036–3045.
DOI
[221]
A. Kiayias, B. Livshits, A. M. Mosteiro, and O. S. T. Litos, A puff of steem: Security analysis of decentralized content curation, arXiv preprint arXiv: 1810.01719, 2018.
DOI
[222]

K. Gu, L. Wang, and W. Jia, Autonomous resource request transaction framework based on blockchain in social network, IEEE Access, vol. 7, pp. 43666–43678, 2019.

[223]

M. U. Rahman, B. Guidi, and F. Baiardi, Blockchain-based access control management for decentralized online social networks, J. Parallel Distributed Comput., vol. 144, pp. 41–54, 2020.

[224]
M. Zhang, Z. Sun, H. Li, B. Niu, F. Li, Y. Xie, and C. Zheng, A blockchain-based privacy-preserving framework for cross-social network photo sharing, in Proc. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops, New York, NY, USA, 2022, pp. 1–6.
[225]

Z. Yan, L. Peng, W. Feng, and L. T. Yang, Socialchain: Decentralized trust evaluation based on blockchain in pervasive social networking, ACM Trans. Internet Techn., vol. 21, no. 1, pp. 1–28, 2021.

[226]
W. Guo, J. Xue, Y. Wang, and Z. Zhou, Blockchain-based reputation evaluation using game theory in social networking, in Proc. 4th ACM International Symposium on Blockchain and Secure Critical Infrastructure, Nagasaki, Japan, 2022, pp. 107–114.
DOI
[227]
I. S. Ochoa, G. D. Mello, L. A. Silva, A. J. P. Gomes, A. M. R. Fernandes, and V. R. Q. Leithardt, Fakechain: A blockchain architecture to ensure trust in social media networks, in Proc. 12th International Conference on Quality of Information and Communications Technology, Ciudad Real, Spain, 2019, pp. 105–118.
[228]

L. Zhang, Y. Zhang, Q. Wu, Y. Mu, and F. Rezaeibagha, A secure and efficient decentralized access control scheme based on blockchain for vehicular social networks, IEEE Internet Things J., vol. 9, no. 18, pp. 17938–17952, 2022.

[229]

H. Shen, J. Zhou, Z. Cao, X. Dong, and K. R. Choo, Blockchain-based lightweight certificate authority for efficient privacy-preserving location-based service in vehicular social networks, IEEE Internet Things J., vol. 7, no. 7, pp. 6610–6622, 2020.

[230]

D. M. Lambert and M. G. Enz, Issues in supply chain management: Progress and potential, Industrial Marketing Management, vol. 62, pp. 1–16, 2017.

[231]

D. Ivanov, A. Dolgui, and B. Sokolov, The impact of digital technology and industry 4.0 on the ripple effect and supply chain risk analytics, International Journal of Production Research, vol. 57, no. 3, pp. 829–846, 2019.

[232]

N. Kshetri and E. Loukoianova, Blockchain adoption in supply chain networks in Asia, IT Prof., vol. 21, no. 1, pp. 11–15, 2019.

[233]

M. M. Queiroz, S. F. Wamba, M. D. Bourmont, and R. Telles, Blockchain adoption in operations and supply chain management: Empirical evidence from an emerging economy, International Journal of Production Research, vol. 59, no. 20, pp. 6087–6103, 2021.

[234]
X. Wu, Z. -P. Fan, and B. Cao, An analysis of strategies for adopting blockchain technology in the fresh product supply chain, International Journal of Production Research, doi: 10.1080/00207543.2021.1894497.
DOI
[235]

F. Casino, V. Kanakaris, T. K. Dasaklis, S. J. Moschuris, S. Stachtiaris, M. Pagoni, and N. P. Rachaniotis, Blockchain-based food supply chain traceability: A case study in the dairy sector, International Journal of Production Research, vol. 59, no. 19, pp. 5758–5770, 2021.

[236]

J. D. Sekuloska and A. Erceg, Blockchain technology toward creating a smart local food supply chain, Comput., vol. 11, no. 6, p. 95, 2022.

[237]
F. Marinello, M. Atzori, L. Lisi, D. Boscaro, and A. Pezzuolo, Development of a traceability system for the animal product supply chain based on blockchain technology, in Proc. 8th European Conference on Precision Livestock Farming (ECPLF), Nantes, France, 2017, pp. 258–268.
DOI
[238]

S. S. Kamble, A. Gunasekaran, and R. Sharma, Modeling the blockchain enabled traceability in agriculture supply chain, International Journal of Information Management, vol. 52, p. 101967, 2020.

[239]

I. A. Omar, M. Debe, R. Jayaraman, K. Salah, M. A. Omar, and J. Arshad, Blockchain-based supply chain traceability for COVID-19 personal protective equipment, Comput. Ind. Eng., vol. 167, p. 107995, 2022.

[240]

B. M. Yakubu, R. Latif, A. Yakubu, M. I. Khan, and A. I. Magashi, Ricechain: Secure and traceable rice supply chain framework using blockchain technology, PeerJ Comput. Sci., vol. 8, p. e801, 2022.

[241]
M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda, Blockchain-based traceability in agri-food supply chain management: A practical implementation, in Proc. 2018 IoT Vertical and Topical Summit on Agriculture, Tuscany, Italy, 2018, pp. 1–4.
DOI
[242]
T. K. Dasaklis, F. Casino, and C. Patsakis, Defining granularity levels for supply chain traceability based on IoT and blockchain, in Proc. International Conference on Omni-Layer Intelligent Systems, Crete, Greece, 2019, pp. 184–190.
DOI
[243]

M. Kouhizadeh, S. Saberi, and J. Sarkis, Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers, International Journal of Production Economics, vol. 231, p. 107831, 2021.

[244]

S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, Blockchain technology and its relationships to sustainable supply chain management, International Journal of Production Research, vol. 57, no. 7, pp. 2117–2135, 2019.

[245]

R. L. Rana, C. Tricase, and L. D. Cesare, Blockchain technology for a sustainable agri-food supply chain, British Food Journal, vol. 123, no. 11, pp. 3471–3485, 2021.

[246]
S. Malik, V. Dedeoglu, S. S. Kanhere, and R. Jurdak, Trustchain: Trust management in blockchain and IoT supported supply chains, in Proc. 2019 IEEE International Conference on Blockchain, Atlanta, GA, USA, 2019, pp. 184–193.
DOI
[247]

M. S. Al-Rakhami and M. Al-Mashari, A blockchain-based trust model for the internet of things supply chain management, Sensors, vol. 21, no. 5, p. 1759, 2021.

[248]

Q. Song, Y. Chen, Y. Zhong, K. Lan, S. J. Fong, and R. Tang, A supply-chain system framework based on internet of things using blockchain technology, ACM Transactions on Internet Technology, vol. 21, no. 1, pp. 1–24, 2021.

[249]

P. Centobelli, R. Cerchione, P. D. Vecchio, E. Oropallo, and G. Secundo, Blockchain technology for bridging trust, traceability and transparency in circular supply chain, Information &Management, vol. 59, no. 7, p. 103508, 2021.

[250]

P. V. R. P. Raj, S. K. Jauhar, M. Ramkumar, and S. Pratap, Procurement, traceability and advance cash credit payment transactions in supply chain using blockchain smart contracts, Comput. Ind. Eng., vol. 167, p. 108038, 2022.

[251]

R. Azzi, R. K. Chamoun, and M. Sokhn, The power of a blockchain-based supply chain, Computers &Industrial Engineering, vol. 135, pp. 582–592, 2019.

[252]

A. Bateman and L. Bonanni, What supply chain transparency really means, Harvard Business Review, vol. 20, pp. 2–8, 2019.

[253]

Z. Zhou, X. Liu, F. Zhong, and J. Shi, Improving the reliability of the information disclosure in supply chain based on blockchain technology, Electron. Commer. Res. Appl., vol. 52, p. 101121, 2022.

[254]

Z. Sun, Q. Xu, and B. Shi, Price and product quality decisions for a two-echelon supply chain in the blockchain era, Asia Pac. J. Oper. Res., vol. 39, no. 1, p. 2140016, 2022.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 September 2022
Revised: 03 December 2022
Accepted: 16 December 2022
Published: 31 December 2022
Issue date: December 2022

Copyright

© The author(s) 2022

Acknowledgements

Acknowledgements

This work was supported in part by the US National Science Foundation (NSF) (No. 1822985).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return