[1]
X. Chen, M. X. Liu, and G. Y. Yan, Drug-target interaction prediction by random walk on the heterogeneous network, Mol. BioSyst., vol. 8, no. 7, pp. 1970-1978, 2012.
[2]
M. Campillos, M. Kuhn, A. C. Gavin, L. J. Jensen, and P. Bork, Drug target identification using side-effect similarity, Science, vol. 321, no. 5886, pp. 263-266, 2008.
[3]
J. L. Zhou, A. Zeng, Y. Fan, and Z. R. Di, Ranking scientific publications with similarity-preferential mechanism, Scientometrics, vol. 106, no. 2, pp. 805-816, 2016.
[4]
M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in Proc. 14th Int. Conf. Neural Information Processing Systems: Natural and Synthetic, Cambridge, MA, USA, 2001, pp. 585-591.
[5]
M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum, V. De Silva, and J. C. Langford, The isomap algorithm and topological stability, Science, vol. 295, no. 5552, p. 7, 2002.
[6]
C. Yang, Z. Y. Liu, D. L. Zhao, M. S. Sun, and E. Y. Chang, Network representation learning with rich text information, in Proc. 24th Int. Conf. Artificial Intelligence, Halifax, Canada, 2015, pp. 2111-2117.
[7]
B. Perozzi, R. Al-Rfou, and S. Skiena, Deepwalk: Online learning of social representations, in Proc. 20th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, NY, USA, 2014, pp. 701-710.
[8]
A. Grover and J. Leskovec, node2vec: Scalable feature learning for networks, in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, NY, USA, 2016, pp. 855-864.
[9]
K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Deep residual learning for image recognition, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA 2016, pp. 770-778.
[10]
J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin, A convolutional encoder model for neural machine translation, arXiv preprint arXiv: 1611.02344, 2016.
[11]
S. S. Cao, W. Lu, and Q. K. Xu, Deep neural networks for learning graph representations, in Proc. 30th AAAI Conf. Artificial Intelligence, Phoenix, AZ, USA, 2016, pp. 1145-1152.
[12]
D. X. Wang, P. Cui, and W. W. Zhu, Structural deep network embedding, in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, NY, USA, 2016, pp. 1225-1234.
[13]
T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv: 1609.02907v4, 2016.
[14]
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, Graph attention networks, arXiv preprint arXiv: 1710.10903, 2017.
[15]
M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, in Proc. 30th Int. Conf. Neural Information Processing Systems, Red Hook, NY, USA, 2016, pp. 3844-3852.
[16]
W. L. Hamilton, Z. Ying, and J. Leskovec, Inductive representation learning on large graphs, presented at Advances in Neural Information Processing Systems, Los Angele, CA, USA, 2017, pp. 1024-1034.
[17]
J. Chen, T. F. Ma, and C. Xiao, FastGCN: Fast learning with graph convolutional networks via importance sampling, arXiv preprint arXiv: 1801.10247, 2018.
[18]
F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguňá, and D. Krioukov, Popularity versus similarity in growing networks, Nature, vol. 489, no. 7417, pp. 537-540, 2012.
[19]
Ö. Şimşek and D. Jensen, Navigating networks by using homophily and degree, Proc. Natl. Acad. Sci. USA, vol. 105, no. 35, pp. 12 758-12 762, 2008.
[20]
A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, vol. 286, no. 5439, pp. 509-512, 1999.
[21]
Y. Wu, T. Z. Fu, and D. M. Chiu, Generalized preferential attachment considering aging, J. Informetr., vol. 8, no. 3, pp. 650-658, 2014.
[22]
M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery, Learning to construct knowledge bases from the world wide web, Artif. Intellig., vol. 118, nos. 1 & 2, pp. 69-113, 2000.
[23]
A. Popescul and L. H. Ungar, Statistical relational learning for link prediction, in Proc. Workshop on Learning Statistical Models from Relational Data at IJCAI-2003, Acapulco, Mexico, 2003.
[24]
D. Liben-Nowell and J. Kleinberg, The link-prediction problem for social networks, J. Am. Soc. Inf. Sci. Technol., vol. 58, no. 7, pp. 1019-1031, 2007.
[25]
T. Zhou, L. Y. Lü, and Y. C. Zhang, Predicting missing links via local information, Eur. Phys. J. B, vol. 71, no. 4, pp. 623-630, 2009.
[26]
H. F. Liu, Z. Hu, H. Haddadi, and H. Tian, Hidden link prediction based on node centrality and weak ties, EPL(Europhys. Lett.), vol. 101, no. 1, p. 18004, 2013.
[27]
G. Rücker, Network meta-analysis, electrical networks and graph theory, Res. Synth. Methods, vol. 3, no. 4, pp. 312-324, 2012.
[28]
A. Clauset, C. Moore, and M. E. J. Newman, Hierarchical structure and the prediction of missing links in networks, Nature, vol. 453, no. 7191, pp. 98-101, 2008.
[29]
Z. Huang, Link prediction based on graph topology: The predictive value of the generalized clustering coefficient, presented at LinkKDD’06, Philadelphia, PA, USA, 2006.
[30]
R. H. Byrd, G. M. Chin, J. Nocedal, and Y. C. Wu, Sample size selection in optimization methods for machine learning, Mathemat. Programm., vol. 134, no. 1, pp. 127-155, 2012.
[31]
M. Li, T. Zhang, Y. Q. Chen, and A. J. Smola, Efficient mini-batch training for stochastic optimization, in Proc. 20th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, New York, NY, USA, 2014, pp. 661-670.
[32]
T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv: 1301.3781v3, 2013.
[33]
J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv: 1810.04805v2, 2018.
[34]
J. Tang, M. Qu, M. Z. Wang, M. Zhang, J. Yan, and Q. Z. Mei, Line: Large-scale information network embedding, in Proc. 24th Int. Conf. World Wide Web, Republic and Canton of Geneva, Florence, Italy, 2015, pp. 1067-1077.
[35]
X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, J. Mach. Learn. Res., vol. 9, pp. 249-256, 2010.
[36]
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv: 1412.6980, 2014.
[37]
T. N. Kipf and M. Welling, Variational graph auto-encoders, arXiv preprint arXiv: 1611.07308, 2016.
[38]
L. C. Freeman, Centrality in social networks conceptual clarification, Soc. Networks, vol. 1, no. 3, pp. 215-239, 1978.
[39]
W. W. Gu, L. Gong, X. D. Lou, and J. Zhang, The hidden flow structure and metric space of network embedding algorithms based on random walks, Sci. Rep., vol. 7, p. 13114, 2017.
[40]
D. S. Wang, C. M. Song, and A. L. Barabási, Quantifying long-term scientific impact, Science, vol. 342, no. 6154, pp. 127-132, 2013.
[41]
V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, J. Statist. Mechan.: Theory Exp., vol. 2008, p. P10008, 2008.