Journal Home > Volume 29 , Issue 1-12

Solid oxide electrolysis cell (SOEC) as an electrochemical energy conversion device has attracted increasing attention due to its large current density, high Faradaic efficiency and energy efficiency. Oxygen evolution reaction at the anode, a four-electron transfer process, is an important half-reaction for SOEC, which contributes to the main polarization resistance and consumes most electric energy during the electrolysis process. Hence, designing anode materials with high activity and stability is crucial for the performance improvement and practical application of SOEC. Recently, some advances have been made in the development of high-performance anode. In the current review, the mechanisms for CO2 and/or H2O electrolysis are highlighted. The physicochemical and electrochemical properties of different types of anodes are summarized. Various efficient strategies for anode optimization are introduced. Furthermore, the outlook for the future research of SOEC is included. This review might be helpful for the development of anode materials and the practical application of SOEC.


menu
Abstract
Full text
Outline
About this article

Recent Advances in Anode Materials of Solid Oxide Electrolysis Cells

Show Author's information Geng Zoua,bWei-Cheng Fenga,bYue-Feng Songa( )Guo-Xiong Wanga( )
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Solid oxide electrolysis cell (SOEC) as an electrochemical energy conversion device has attracted increasing attention due to its large current density, high Faradaic efficiency and energy efficiency. Oxygen evolution reaction at the anode, a four-electron transfer process, is an important half-reaction for SOEC, which contributes to the main polarization resistance and consumes most electric energy during the electrolysis process. Hence, designing anode materials with high activity and stability is crucial for the performance improvement and practical application of SOEC. Recently, some advances have been made in the development of high-performance anode. In the current review, the mechanisms for CO2 and/or H2O electrolysis are highlighted. The physicochemical and electrochemical properties of different types of anodes are summarized. Various efficient strategies for anode optimization are introduced. Furthermore, the outlook for the future research of SOEC is included. This review might be helpful for the development of anode materials and the practical application of SOEC.

Keywords: Anode materials, Perovskite oxide, Solid oxide electrolysis cell, CO2 and/or H2O electrolysis

References(100)

[1]

Sussmann R, Rettinger M. Can we measure a COVID-19-related slowdown in atmospheric CO2 growth? sensitivity of total carbon column observations[J]. Rem. Sens., 2020, 12(15): 2387.

[2]

Song Y F, Zhang X M, Xie K, Wang G X, Bao X H. High-temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects[J]. Adv. Mater., 2019, 31(50): 1902033.

[3]

Song Y F, Zhang X M, Zhou Y J, Lü H F, Liu Q X, Feng W C, Wang G X, Bao X H. Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified LSM-YSZ anode[J]. J. Energy Chem., 2019, 35: 181–187.

[4]

Wu T, Zhang W Q, Li Y F, Zheng Y, Yu B, Chen J, Sun X M. Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance[J]. Adv. Energy Mater., 2018, 8(33): 1802203.

[5]

Fleig J. Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance[J]. Annu. Rev. Mater. Res., 2003, 33: 361–382.

[6]

Shirai Y, Hashimoto S, Sato K, Yashiro K, Amezawa K, Mizusaki J, Kawada T. Crystal structure and thermal expansion behavior of oxygen stoichiometric lanthanum strontium manganite at high temperature[J]. Solid State Ionics, 2014, 256: 83–88.

[7]

Shen M H, Ai F J, Ma H L, Xu H, Zhang Y Y. Progress and prospects of reversible solid oxide fuel cell materials[J]. Iscience, 2021, 24(12): 103464.

[8]

Mikkelsen L, Skou E. Determination of the oxygen chemical diffusion coefficient in perovskites by a thermogravimetric method[J]. J. Therm. Anal. Calorim., 2001, 64(3): 873–878.

[9]

Ebbesen S D, Mogensen M. Electrolysis of carbon dioxide in solid oxide electrolysis cells[J]. J. Power Sources, 2009, 193(1): 349–358.

[10]

Steele B C H, Hori K M, Uchino S. Kinetic parameters influencing the performance of IT-SOFC composite electrodes[J]. Solid State Ionics, 2000, 135(1): 445–450.

[11]

Chen K F, Jiang S P. Failure mechanism of (La,Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells[J]. Int. J. Hydrogen Energy, 2011, 36(17): 10541–10549.

[12]

Knibbe R, Traulsen M L, Hauch A, Ebbesen S D, Mogensen M. Solid oxide electrolysis cells: Degradation at high current densities[J]. J. Electrochem. Soc., 2010, 157(8): B1209–B1217.

[13]

Mahata A, Datta P, Basu R N. Synthesis and characterization of Ca doped LaMnO3 as potential anode material for solid oxide electrolysis cells[J]. Ceram. Int., 2017, 43(1): 433–438.

[14]

Fang Q P, Menzler N H, Blum L. Degradation analysis of long-term solid oxide fuel cell stacks with respect to chromium poisoning in La0.58Sr0.4Co0.2Fe0.8O3−δ and La0.6Sr0.4CoO3−δ cathodes[J]. J. Electrochem. Soc., 2021, 168(10): 104505.

[15]

Develos Bagarinao K, De Vero J, Kishimoto H, Ishiyama T, Yamaji K, Horita T, Yokokawa H. Multilayered LSC and GDC: An approach for designing cathode materials with superior oxygen exchange properties for solid oxide fuel cells[J]. Nano Energy, 2018, 52: 369–380.

[16]

Zheng Y F, Li Q S, Chen T, Wu W, Xu C, Wang W G. Comparison of performance and degradation of large-scale solid oxide electrolysis cells in stack with different composite air electrodes[J]. Int. J. Hydrogen Energy, 2015, 40(6): 2460–2472.

[17]

Sharma V I, Yildiz B. Degradation mechanism in La0.8Sr0.2CoO3 as contact layer on the solid oxide electrolysis cell anode[J]. J. Electrochem. Soc., 2010, 157(3): B441–B448.

[18]

Zheng H Y, Tian Y F, Zhang L L, Chi B, Pu J, Jian L. La0.8Sr0.2Co0.8Ni0.2o3−δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells[J]. J. Power Sources, 2018, 383: 93–101.

[19]

Tan Y, Duan N Q, Wang A, Yan D, Chi B, Wang N, Pu J, Li J. Performance enhancement of solution impregnated nanostructured La0.8Sr0.2Co0.8Ni0.2O3−δ oxygen electrode for intermediate temperature solid oxide electrolysis cells[J]. J. Power Sources, 2016, 305: 168–174.

[20]

Chrzan A, Ovtar S, Jasinski P, Chen M, Hauch A. High performance LaNi1−xCoxO3−δ(x=0.4 to 0.7) infiltrated oxygen electrodes for reversible solid oxide cells[J]. J. Power Sources, 2017, 353: 67–76.

[21]

Duan N Q, Yang J J, Gao M R, Zhang B W, Luo J L, Du Y H, Xu M H, Jia L C, Chi B, Li J. Multi-functionalities enabled fivefold applications of LaCo0.6Ni0.4O3−δ in intermediate temperature symmetrical solid oxide fuel/electrolysis cells[J]. Nano Energy, 2020, 77: 105207.

[22]

Ma Q L, Dierickx S, Vibhu V, Sebold D, de Haart L G J, Weber A, Guillon O, Menzler N H. Performances of solid oxide cells with La0.97Ni0.5Co0.5O3−δ as air-electrodes[J]. J. Electrochem. Soc., 2020, 167(8): 084522.

[23]

Khan M S, Xu X Y, Li M R, Rehman A U, Knibbe R, Yago A J, Zhu Z H. Evaluation of SrCo0.8Nb0.2O3−δ, SrCo0.8Ta0.2O3−δ and SrCo0.8Nb0.1Ta0.1O3−δ as air electrode materials for solid oxide electrolysis and reversible solid oxide cells[J]. Electrochim. Acta, 2019, 321: 134654.

[24]

Patrakeev M V, Bahteeva J A, Mitberg E B, Leonidov I A, Kozhevnikov V L, Poeppelmeier K R. Electron/hole and ion transport in La1−xSrxFeo3−δ[J]. J. Solid State Chem., 2003, 172(1): 219–231.

[25]

Niu Y J, Sunarso J, Liang F L, Zhou W, Zhu Z H, Shao Z P. A comparative study of oxygen reduction reaction on Bi- and La-doped SrFeO3−δ perovskite cathodes[J]. J. Electrochem. Soc., 2011, 158(2): B132–B138.

[26]

Chavan S V, Singh R N. Preparation, properties, and reactivity of lanthanum strontium ferrite as an intermediate temperature SOFC cathode[J]. J. Mater. Sci., 2013, 48(19): 6597–6604.

[27]

Fan H, Zhang Y L, Han M F. Infiltration of La0·6Sr0·4FeO3−δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell[J]. J. Alloys Compd., 2017, 723: 620–626.

[28]

Guan C Z, Wang Y D, Chen K F, Xiao G P, Lin X, Zhou J, Song S Z, Wang J Q, Zhu Z Y, Zhou X D. Molten salt synthesis of Nb-doped (La, Sr)FeO3 as the oxygen electrode for reversible solid oxide cells[J]. Mater. Lett., 2019, 245: 114–117.

[29]

Cui C S, Wang Y, Tong Y C, Wang S W, Chen C S, Zhan Z L. Syngas production through CH4-assisted co-electrolysis of H2O and CO2 in La0.8Sr0.2Cr0.5Fe0.5O3−δ-Zr0.84Y0.16O2−δ electrode-supported solid oxide electrolysis cells[J]. Int. J. Hydrogen Energy, 2021, 46(39): 20305–20312.

[30]

Tian Y F, Zheng H Y, Zhang L L, Chi B, Pu J, Li J. Direct electrolysis of CO2 in symmetrical solid oxide electrolysis cell based on La0.6Sr0.4Fe0.8Ni0.2O3−δ electrode[J]. J. Electrochem. Soc., 2018, 165(2): F17–F23.

[31]

Zhang L J, Li Y H, Zhang B Z, Wan Y H, Xu Z Q, Zhang S W, Zhu T L, Xia C R. (La,Sr)(Ti,Fe)O3−δ perovskite with in-situ constructed FeNi3 nanoparticles as fuel electrode for reversible solid oxide cell[J]. Int. J. Energ. Res., 2021, 45(15): 21264–21273.

[32]

Peng X Z, Tian Y F, Liu Y, Wang W J, Jia L C, Pu J, Chi B, Li J. An efficient symmetrical solid oxide electrolysis cell with LSFM-based electrodes for direct electrolysis of pure CO2[J]. J. CO2 Util., 2020, 36: 18–24.

[33]

Tian Y F, Wang W J, Liu Y, Zhang L L, Jia L C, Yang J, Chi B, Pu J, Li J. Cobalt-free perovskite oxide La0.6Sr0.4Fe0.8Ni0.2O3−δ as active and robust oxygen electrode for reversible solid oxide cells[J]. ACS Appl. Energy Mater., 2019, 2(5): 3297–3305.

[34]

Zheng Y F, Wang S, Pan Z H, Yin B. Electrochemical CO2 reduction to Co using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode[J]. Energy, 2021, 228: 120579.

[35]

Berger C, Bucher E, Gspan C, Sitte W. Crystal structure, oxygen nonstoichiometry, and mass and charge transport properties of the Sr-free SOFC/SOEC air electrode material La0.75Ca0.25FeO3−δ[J]. J. Solid State Chem., 2019, 273: 92–100.

[36]

Tian Y F, Zhang L L, Liu Y, Jia L C, Yang J, Chi B, Pu J, Li J. A self-recovering robust electrode for highly efficient CO2 electrolysis in symmetrical solid oxide electrolysis cells[J]. J. Mater. Chem. A, 2019, 7(11): 6395–6400.

[37]

Tan T, Wang Z M, Qin M X, Zhong W T, Hu J H, Yang C H, Liu M L. In situ exsolution of core-shell structured NiFe/FeOx nanoparticles on Pr0.4Sr1.6(NiFe)1.5Mo0.5O6−δ for CO2 electrolysis[J]. Adv. Funct. Mater., 2022, 32(34): 2202878.

[38]

Zhang L H, Xu C M, Sun W, Ren R Z, Yang X X, Luo Y Z, Qiao J S, Wang Z H, Zhen S Y, Sun K N. Constructing perovskite/alkaline-earth metal composite heterostructure by infiltration to revitalize CO2 electrolysis[J]. Sep. Purif. Technol., 2022, 298: 121475.

[39]

Simrick N J, Kilner J A, Atkinson A, Rupp J L M, Ryll T M, Bieberle-Hütter A, Galinski H, Gauckler L J. Micro-fabrication of patterned LSCF thin-film cathodes with gold current collectors[J]. Solid State Ionics, 2011, 192(1): 619–626.

[40]

Jiang S P. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes[J]. Solid State Ionics, 2002, 146(1): 1–22.

[41]

Laguna-Bercero M A, Kilner J A, Skinner S J. Development of oxygen electrodes for reversible solid oxide fuel cells with scandia stabilized zirconia electrolytes[J]. Solid State Ionics, 2011, 192(1): 501–504.

[42]

Lei C, Simpson M F, Virkar A V. Investigation of ion and electron conduction in the mixed ionic-electronic conductor-La-Sr-Co-Fe-oxide (LSCF) using alternating current (ac) and direct current (dc) techniques[J]. J. Electrochem. Soc., 2022, 169(1): 014506.

[43]

Tai L W, Nasrallah M M, Anderson H U, Sparlin D M, Sehlin S R. Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3[J]. Solid State Ionics, 1995, 76(3): 273–283.

[44]

Ai N, He S, Li N, Zhang Q, Rickard W D A, Chen K F, Zhang T, Jiang S P. Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells[J]. J. Power Sources, 2018, 384: 125–135.

[45]

Yang Z B, Wang N, Ma C Y, Jin X F, Lei Z, Xiong X Y, Peng S P. Co-electrolysis of H2O-CO2 in a solid oxide electrolysis cell with symmetrical La0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ electrode[J]. J. Electroanal. Chem., 2019, 836: 107–111.

[46]

Shao Z P, Yang W S, Cong Y, Dong H, Tong J H, Xiong G X. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane[J]. J. Membr. Sci., 2000, 172(1–2): 177–188.

[47]

Liang F Y, Jiang H Q, Luo H X, Kriegel R, Caro J. High-purity oxygen production by a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3−δ tube membrane[J]. Catal. Today, 2012, 193(1): 95–100.

[48]

Shiiba H, Bishop C L, Rushton M J D, Nakayama M, Nogami M, Kilner J A, Grimes R W. Effect of a-site cation disorder on oxygen diffusion in perovskite-type Ba0.5Sr0.5Co1−xFexO2.5[J]. J. Mater. Chem. A, 2013, 1(35): 10345–10352.

[49]

Wang L, Merkle R, Maier J. Oxygen reduction kinetics and transport properties of (Ba,Sr)(Co,Fe)O3−δ and related SOFC cathode materials[J]. ECS Trans., 2009, 25(2): 2497–2505.

[50]

Yu B, Zhang W Q, Xu J M, Chen J. Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and its application for anode of SOEC[J]. Int. J. Hydrogen Energy, 2008, 33(23): 6873–6877.

[51]

Wang H H, Cong Y, Yang W S. Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane reactor[J]. Catal. Today, 2003, 82(1): 157–166.

[52]

Li M, Hua B, Chen J, Zhong Y M, Luo J L. Charge transfer dynamics in RuO2/perovskite nanohybrid for enhanced electrocatalysis in solid oxide electrolyzers[J]. Nano Energy, 2019, 57: 186–194.

[53]

Prasopchokkul P, Seeharaj P, Kim-Lohsoontorn P. Ba0·5Sr0·5(Co0·8Fe0.2)1−xTaxO3−δ perovskite anode in solid oxide electrolysis cell for hydrogen production from high-temperature steam electrolysis[J]. Int. J. Hydrogen Energy, 2021, 46(10): 7023–7036.

[54]

Yang Z B, Jin C, Yang C H, Han M F, Chen F L. Ba0.9Co0.5Fe0.4Nb0.1O3−δ as novel oxygen electrode for solid oxide electrolysis cells[J]. Int. J. Hydrogen Energy, 2011, 36(18): 11572–11577.

[55]

He B B, Zhao L, Song S X, Liu T, Chen F L, Xia C R. Sr2Fe1.5Mo0.5O6−δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells[J]. J. Electrochem. Soc., 2012, 159(5): B619–B626.

[56]

Zhang S W, Zhu K, Hu X Y, Peng R R, Xia C R. Antimony doping to greatly enhance the electrocatalytic performance of Sr2Fe1.5Mo0.5O6−δ perovskite as a ceramic anode for solid oxide fuel cells[J]. J. Mater. Chem., 2021, 9(43): 24336–24347.

[57]

Liu Q, Yang C H, Dong X H, Chen F L. Perovskite Sr2Fe1.5Mo0.5O6−δ as electrode materials for symmetrical solid oxide electrolysis cells[J]. Int. J. Hydrogen Energy, 2010, 35(19): 10039–10044.

[58]

Dai N N, Feng J, Wang Z H, Jiang T Z, Sun W, Qiao J S, Sun K N. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5−xNixMo0.5O6−δ (x=0, 0.05, 0.1, 0.2, 0.4) as cathodes for sofcs[J]. J. Mater. Chem., 2013, 1(45): 14147–14153.

[59]

Yang Y R, Wang Y H, Yang Z B, Chen Y, Peng S P. A highly active and durable electrode with in situ exsolved Co nanoparticles for solid oxide electrolysis cells[J]. J. Power Sources, 2020, 478: 229082.

[60]

Yang Y, Shi N, Xie Y, Li X Y, Hu X Y, Zhu K, Huan D M, Peng R R, Xia C R, Lu Y L. K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells[J]. Electrochim. Acta, 2021, 389: 138453.

[61]

Wei B, Chen K, Zhao L, Ai N, Lü Z, Jiang S P. SmBaCo2O5+δ as high efficient oxygen electrode of solid oxide electrolysis cells[J]. ECS Trans., 2013, 57(1): 3189–3196.

[62]

Zheng Y F, Yang H, Pan Z H, Zhang C Z. A Ca and Fe co-doped layered perovskite as stable air electrode in solid oxide electrolyzer cells under high-current electrolysis[J]. Electrochim. Acta, 2017, 251: 581–587.

[63]

Niu B B, Lu C L, Yi W D, Luo S J, Li X N, Zhong X W, Zhao X Z, Xu B M. In-situ growth of nanoparticles-decorated double perovskite electrode materials for symmetrical solid oxide cells[J]. Appl. Catal. B, 2020, 270: 118842.

[64]

Jun A, Kim J, Shin J, Kim G. Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen-capacity perovskite[J]. Angew. Chem. Int. Ed., 2016, 55(40): 12512–12515.

[65]

Tian Y F, Yan D, Chi B, Chen J, Li X, Li J. Preparation and properties of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ as novel oxygen electrode for solid oxide electrolysis cells[J]. ECS Trans., 2017, 78(1): 533–541.

[66]

Vibhu V, Flura A, Rougier A, Nicollet C, Fourcade S, Hungria T, Grenier J C, Bassat J M. Electrochemical ageing study of mixed lanthanum/praseodymium nickelates La2−xPrxNiO4+δ as oxygen electrodes for solid oxide fuel or electrolysis cells[J]. J. Energy Chem., 2020, 46: 62–70.

[67]

Chauveau F, Mougin J, Bassat J M, Mauvy F, Grenier J C. A new anode material for solid oxide electrolyser: The neodymium nickelate Nd2NiO4+δ[J]. J. Power Sources, 2010, 195(3): 744–749.

[68]

Chauveau F, Mougin J, Mauvy F, Bassat J M, Grenier J C. Electrochemical performances of cells containing alternative oxygen electrodes, Ln2NiO4+δ (Ln=Nd, La)[J]. ECS Trans., 2009, 25(2): 2557–2564.

[69]

Kim S J, Kim K J, Dayaghi A M, Choi G M. Polarization and stability of La2NiO4+δ in comparison with La0.6Sr0.4Co0.2Fe0.8O3−δ as air electrode of solid oxide electrolysis cell[J]. Int. J. Hydrogen Energy, 2016, 41(33): 14498–14506.

[70]

Vibhu V, Vinke I C, Eichel R A, Bassat J M, de Haart L G J. La2Ni1−xCoO4+δ (x=0.0, 0.1 and 0.2) based efficient oxygen electrode materials for solid oxide electrolysis cells[J]. J. Power Sources, 2019, 444: 227292.

[71]

Laguna-Bercero M A, Kinadjan N, Sayers R, El Shinawi H, Greaves C, Skinner S J. Performance of La2−xSrxCo0.5Ni0.5Oδ as an oxygen electrode for solid oxide reversible cells[J]. Fuel Cells, 2011, 11(1): 102–107.

[72]

Ogier T, Mauvy F, Bassat J M, Laurencin J, Mougin J, Grenier J C. Overstoichiometric oxides Ln2NiO4+δ (Ln=La, Pr or Nd) as oxygen anodic electrodes for solid oxide electrolysis application[J]. Int. J. Hydrogen Energy, 2015, 40(46): 15885–15892.

[73]

Vibhu V, Vinke I C, Eichel R A, de Haart L G J. Cobalt substituted Pr2Ni1−xCoO4+δ (x=0, 0.1, 0.2) oxygen electrodes: Impact on electrochemical performance and durability of solid oxide electrolysis cells[J]. J. Power Sources, 2021, 482: 228909.

[74]

Huan D M, Zhang L, Zhang S W, Shi N, Li X Y, Zhu K, Xia C R, Peng R R, Lu Y L. Ruddlesden-popper oxide SrEu2Fe2O7 as a promising symmetrical electrode for pure CO2 electrolysis[J]. J. Mater. Chem. A, 2021, 9(5): 2706–2713.

[75]

Zheng Y F, Jiang H G, Wang S, Qian B, Li Q S, Ge L, Chen H. Mn-doped ruddlesden-popper oxide La1.5Sr0.5NiO4+δ as a novel air electrode material for solid oxide electrolysis cells[J]. Ceram. Int., 2021, 47(1): 1208–1217.

[76]

Liu S M, Zhang W Q, Li Y F, Yu B. ReBaCO2O5+δ (Re = Pr, Nd, and Gd) as promising oxygen electrodes for intermediate-temperature solid oxide electrolysis cells[J]. RSC Advances, 2017, 7(27): 16332−16340.

[77]

Zhou Q J, He T M, Ji Y. SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells[J]. J. Power Sources, 2008, 185(2): 754–758.

[78]

Sun C Z, Kong Y, Shao L, Zhang Q, Wu X, Zhang N Q, Sun K N. Significant zirconium substitution effect on the oxygen reduction activity of the cathode material NdBaCo2O5+δ for solid oxide fuel cells[J]. ACS Sustain. Chem. Eng., 2019, 7(13): 11603–11611.

[79]

Du Z H, Li K Y, Zhao H L, Dong X, Zhang Y, Świerczek K. A SmBaCo2O5+δ double perovskite with epitaxially grown Sm0.2Ce0.8O2−δ nanoparticles as a promising cathode for solid oxide fuel cells[J]. J. Mater. Chem. A, 2020, 8(28): 14162–14170.

[80]

Zhang L L, Tian Y F, Liu Y T, Jia L C, Yang J, Chi B, Pu J, Li J. Direct electrolysis of CO2 in a symmetrical solid oxide electrolysis cell with spinel MnCo2O4 as electrode[J]. Chemelectrochem, 2019, 6(5): 1359–1364.

[81]

Duan N Q, Gao M R, Hua B, Li M, Chi B, Li J, Luo J L. Exploring Ni(Mn1/3Cr2/3)2O4 spinel-based electrodes for solid oxide cells[J]. J. Mater. Chem. A, 2020, 8(7): 3988–3998.

[82]

Kim D, Thaheem I, Yu H, Park J H, Lee K T. Highly promoted electrocatalytic activity of spinel CoFe2O4 by combining with Er0.4Bi1.6O3 as a bifunctional oxygen electrode for reversible solid oxide cells[J]. J. Mater. Chem. A, 2022, 10(4): 2045–2054.

[83]

Zhao Q, Yan Z H, Chen C C, Chen J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond[J]. Chem. Rev., 2017, 117(15): 10121–10211.

[84]

Yang C H, Jin C, Coffin A, Chen F L. Characterization of infiltrated (La0.75Sr0.25)0.95MnO3 as oxygen electrode for solid oxide electrolysis cells[J]. Int. J. Hydrogen Energy, 2010, 35(11): 5187–5193.

[85]

Song Y F, Zhang X M, Zhou Y J, Jiang Q K, Guan F, Lv H F, Wang G X, Bao X H. Promoting oxygen evolution reaction by RuO2 nanoparticles in solid oxide CO2 electrolyzer[J]. Energy Stor. Mater., 2018, 13: 207–214.

[86]

Zhang S L, Wang H Q, Lu M Y, Li C X, Li C J, Barnett S A. Electrochemical performance and stability of SrTi0.3Fe0.6Co0.1O3−δ infiltrated La0.8Sr0.2MnO3-Zr0.92Y0.16O2−δ oxygen electrodes for intermediate-temperature solid oxide electrochemical cells[J]. J. Power Sources, 2019, 426: 233–241.

[87]

Yun B H, Kim K J, Joh D W, Chae M S, Lee J J, Kim D W, Kang S, Choi D, Hong S T, Lee K T. Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures[J]. J. Mater. Chem. A, 2019, 7(36): 20558–20566.

[88]

Li T P, Wang T P, Wei T, Hu X, Ye Z M, Wang Z, Dong D H, Chen B, Wang H T, Shao Z P. Robust anode-supported cells with fast oxygen release channels for efficient and stable CO2 electrolysis at ultrahigh current densities[J]. Small, 2021, 17(6): 2007211.

[89]

Wang Y, Xu J H, Meng X Y, Liu T, Chen F L. Ni infiltrated Sr2Fe1.5Mo0.5O6−δ-Ce0.8Sm0.2O1.9 electrode for methane assisted steam electrolysis process[J]. Electrochem. Commun., 2017, 79: 63–67.

[90]

Liu T, Liu H, Zhang X Y, Lei L, Zhang Y X, Yuan Z H, Chen F L, Wang Y. A robust solid oxide electrolyzer for highly efficient electrochemical reforming of methane and steam[J]. J. Mater. Chem. A, 2019, 7(22): 13550–13558.

[91]

Chen K F, Ai N, Jiang S P. Performance and stability of (La,Sr)MnO3-Y2O3-ZrO2 composite oxygen electrodes under solid oxide electrolysis cell operation conditions[J]. Int. J. Hydrogen Energy, 2012, 37(14): 10517–10525.

[92]

Liu Y, Tian Y F, Wang W J, Li Y T, Chattopadhyay S, Chi B, Pu J. Promoting electrocatalytic activity and stability via Er0.4Bi1.6O3−δ in situ decorated La0.8Sr0.2MnO3−δ oxygen electrode in reversible solid oxide cell[J]. ACS Appl. Mater. Interfaces., 2020, 12(52): 57941–57949.

[93]

Chen K F, Ai N, Jiang S P. Development of (Gd,Ce)O2-impregnated (La,Sr)MnO3 anodes of high temperature solid oxide electrolysis cells[J]. J. Electrochem. Soc., 2010, 157(11): P89–P94.

[94]

Gondolini A, Mercadelli E, Sanson A. Single step anode-supported solid oxide electrolyzer cell[J]. J. Eur. Ceram. Soc., 2015, 35(16): 4617–4621.

[95]

Chen K F, Ai N, Jiang S P. Enhanced electrochemical performance and stability of (La,Sr)MnO3-(Gd,Ce)O2 oxygen electrodes of solid oxide electrolysis cells by palladium infiltration[J]. Int. J. Hydrogen Energy, 2012, 37(2): 1301–1310.

[96]

Tan Y, Gao S, Xiong C Y, Chi B. Nano-structured LSM-YSZ refined with PdO/ZrO2 oxygen electrode for intermediate temperature reversible solid oxide cells[J]. Int. J. Hydrogen Energy, 2020, 45(38): 19823–19830.

[97]

Men H J, Tian N, Qu Y M, Wang M, Zhao S, Yu J. Improved performance of a lanthanum strontium manganite-based oxygen electrode for an intermediate-temperature solid oxide electrolysis cell realized via ionic conduction enhancement[J]. Ceram. Int., 2019, 45(6): 7945–7949.

[98]

Khoshkalam M, Ð Tripković, Tong X F, Faghihi-Sani M A, Chen M, Hendriksen P V. Improving oxygen incorporation rate on (La0.6Sr0.4)0.98FeO3−δ via Pr2Ni1−xCuxO4+δ surface decoration[J]. J. Power Sources, 2020, 457: 228035.

[99]

Sar J, Charlot F, Almeida A, Dessemond L, Djurado E. Coral microstructure of graded CGO/LSCF oxygen electrode by electrostatic spray deposition for energy (IT-SOFC, SOEC)[J]. Fuel Cells, 2014, 14(3): 357–363.

[100]

Cao J W, Li Y F, Zheng Y, Wang S B, Zhang W Q, Qin X F, Geng G, Yu B. A novel solid oxide electrolysis cell with mmicro-/nano channel anode for electrolysis at ultra-high current density over 5 A cm−2[J]. Adv. Energy Mater., 2022: 2200899.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 June 2022
Revised: 23 June 2022
Accepted: 31 August 2022
Published: 04 September 2022
Issue date: February 2023

Copyright

© 2023 Xiamen University and Chinese Chemical Society.

Acknowledgements

Acknowledgements

We gratefully acknowledge financial support from the National Key R&D Program of China (2021YFA1502400), the National Natural Science Foundation of China (22002166, 22125205), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21070613), Dalian National Laboratory for Clean Energy (DNL202007, DNL201923). G.X. Wang thanks the financial support from CAS Youth Innovation Promotion (Y201938). We also acknowledge the Photon Science Center for Carbon Neutrality.

Rights and permissions

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Return