AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries

Kai-Yue ChenaYun-Ting XuaYang Zhaoa( )Jun-Kai LibXiao-Peng WangcLiang-Ti Qud( )
Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
Collage of Science, Henan Agricultural University, Zhengzhou, 450001, Henan Province, PR, China
Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry Tsinghua University, Beijing, 100084, China
Show Author Information

Abstract

Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction, energy storage, and intelligent robots. As a prevailing flexible pressure sensor with high performance, the piezoresistive sensor is believed to be one of the fundamental components of intelligent tactile skin. Furthermore, graphene can be used as a building block for highly flexible and wearable piezoresistive sensors owing to its light weight, high electrical conductivity, and excellent mechanical. This review provides a comprehensive summary of recent advances in graphene-based piezoresistive sensors, which we systematically classify as various configurations including one-dimensional fiber, two-dimensional thin film, and three-dimensional foam geometries, followed by examples of practical applications for health monitoring, human motion sensing, multifunctional sensing, and system integration. We also present the sensing mechanisms and evaluation parameters of piezoresistive sensors. This review delivers broad insights on existing graphene-based piezoresistive sensors and challenges for the future generation of high-performance, multifunctional sensors in various applications.

References

[1]

P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng, H. Liu, Graphene nanostructure-based tactile sensors for electronic skin applications, Nano-Micro Lett. 11 (1) (2019) 71.

[2]

M. Park, Y.J. Park, X. Chen, Y.K. Park, M.S. Kim, J.H. Ahn, MoS2-based tactile sensor for electronic skin applications, Adv. Mater. 28 (13) (2016) 2556–2562.

[3]

C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C.Y. Foo, K.J. Chee, P.S. Lee, Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors, Adv. Mater. 26 (13) (2014) 2022–2027.

[4]

S. Zhao, R. Zhu, Electronic skin: electronic skin with multifunction sensors based on thermosensation, Adv. Mater. 29 (15) (2017) 1606151.

[5]

M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, Y. Zhang, Flexible and highly sensitive pressure sensors based on bionic hierarchical structures, Adv. Funct. Mater. 27 (9) (2017) 1606066.

[6]

S. Li, Y. Zhang, Y. Wang, K. Xia, Z. Yin, H. Wang, M. Zhang, X. Liang, H. Lu, M. Zhu, H. Wang, X. Shen, Y. Zhang, Physical sensors for skin-inspired electronics, InforMat. 2 (1) (2020) 184–211.

[7]

W.A.D.M. Jayathilaka, K. Qi, Y. Qin, A. Chinnappan, W. Serrano-García, C. Baskar, H. Wang, J. He, S. Cui, S.W. Thomas, S. Ramakrishna, Significance of nanomaterials in wearables: a review on wearable actuators and sensors, Adv. Mater. 31 (7) (2019) 1805921.

[8]

C. Yan, J. Wang, P.S. Lee, Stretchable graphene thermistor with tunable thermal index, ACS Nano 9 (2) (2015) 2130–2137.

[9]

Y.-Z. Zhang, K.H. Lee, D.H. Anjum, R. Sougrat, Q. Jiang, H. Kim, H.N. Alshareef, MXenes stretch hydrogel sensor performance to new limits, Sci. Adv. 4 (6) (2018) eaat0098.

[10]

L. Wang, Z. Lou, K. Wang, S. Zhao, P. Yu, W. Wei, D. Wang, W. Han, K. Jiang, G. Shen, Biocompatible and biodegradable functional polysaccharides for flexible humidity sensors, Research 2020 (2020) 1–11.

[11]

J. He, P. Xiao, W. Lu, J. Shi, L. Zhang, Y. Liang, C. Pan, S.-W. Kuo, T. Chen, A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor, Nanomater. Energy 59 (2019) 422–433.

[12]

X. Liu, C. Tang, X. Du, S. Xiong, S. Xi, Y. Liu, X. Shen, Q. Zheng, Z. Wang, Y. Wu, A. Horner, J.-K. Kim, A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments, Mater. Horizons 4 (3) (2017) 477–486.

[13]

J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim, J. Yea, C.-Y. Jeon, H.-C. Son, C. Jin, D. Eberli, F. Schmid, B.L. Zambrano, A.F. Renz, C. Forró, H. Choi, K.-I. Jang, R. Küng, J. Vörös, Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain, Nat. Electron. 4 (4) (2021) 291–301.

[14]

Y. Zhou, M. Shen, X. Cui, Y. Shao, L. Li, Y. Zhang, Triboelectric nanogenerator based self-powered sensor for artificial intelligence, Nanomater. Energy 84 (2021) 105887.

[15]

E.S. Hosseini, L. Manjakkal, D. Shakthivel, R. Dahiya, Glycine–chitosan-based flexible biodegradable piezoelectric pressure sensor, ACS Appl. Mater. Interfaces 12 (8) (2020) 9008–9016.

[16]

W. Liu, N. Liu, Y. Yue, J. Rao, F. Cheng, J. Su, Z. Liu, Y. Gao, Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film, Small 14 (15) (2018) 1704149.

[17]

D. Sengupta, S.-H. Chen, A. Michael, C.Y. Kwok, S. Lim, Y. Pei, A.G.P. Kottapalli, Single and bundled carbon nanofibers as ultralightweight and flexible piezoresistive sensors, npj Flex. Electron. 4 (1) (2020) 1–11.

[18]

Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue, W. Liu, L. Wang, S. Jia, C. Li, T. Qi, J. Wang, Y. Gao, Bioinspired microspines for a high-performance spray Ti3C2TX MXene-based piezoresistive sensor, ACS Nano 14 (2) (2020) 2145–2155.

[19]

Q. Zheng, J.-h. Lee, X. Shen, X. Chen, J.-K. Kim, Graphene-based wearable piezoresistive physical sensors, Mater. Today 36 (2020) 158–179.

[20]

C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren, Y. Zhang, Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors, Adv. Mater. 28 (31) (2016) 6640–6648.

[21]

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection, Nat. Nanotechnol. 6 (5) (2011) 296–301.

[22]

Y.H. Wu, H.Z. Liu, S. Chen, X.C. Dong, P.P. Wang, S.Q. Liu, Y. Lin, Y. Wei, L. Liu, Channel crack-designed gold@PU sponge for highly elastic piezoresistive sensor with excellent detectability, ACS Appl. Mater. Interfaces 9 (23) (2017) 20098–20105.

[23]

H. Zhuo, Y. Hu, Z. Chen, X. Peng, L. Liu, Q. Luo, J. Yi, C. Liu, L. Zhong, A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors, J. Mater. Chem. 7 (14) (2019) 8092–8100.

[24]

W. Gao, H. Ota, D. Kiriya, K. Takei, A. Javey, Flexible electronics toward wearable sensing, Acc. Chem. Res. 52 (3) (2019) 523–533.

[25]

X. Wu, Y. Han, X. Zhang, Z. Zhou, C. Lu, Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing, Adv. Funct. Mater. 26 (34) (2016) 6246–6256.

[26]

Y. Chen, X.L. Gong, J.G. Gai, Progress and challenges in transfer of large-area graphene films, Adv. Sci. 3 (8) (2016) 1500343.

[27]

F. Meng, W. Lu, Q. Li, J.-H. Byun, Y. Oh, T.-W. Chou, Graphene-based fibers: a review, Adv. Mater. 27 (35) (2015) 5113–5131.

[28]

C. Gao, K. Chen, Y. Wang, Y. Zhao, L. Qu, 2D graphene-based macroscopic assemblies for micro-supercapacitors, ChemSusChem 13 (6) (2020) 1255–1274.

[29]

N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang, P. Lu, J. Huang, G. Li, Y. Zhang, J. Yang, K. Xie, X. Zhao, C.F. Guo, Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity, Nat. Commun. 11 (1) (2020) 209.

[30]

S.C.B. Mannsfeld, B.C.K. Tee, R.M. Stoltenberg, C.V.H.H. Chen, S. Barman, B.V.O. Muir, A.N. Sokolov, C. Reese, Z. Bao, Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers, Nat. Mater. 9 (10) (2010) 859–864.

[31]

G. Li, D. Chen, C. Li, W. Liu, H. Liu, Engineered microstructure derived hierarchical deformation of flexible pressure sensor induces a supersensitive piezoresistive property in broad pressure range, Adv. Sci. 7 (18) (2020) 2000154.

[32]

X.-F. Zhao, C.-Z. Hang, X.-H. Wen, M.-Y. Liu, H. Zhang, F. Yang, R.-G. Ma, J.-C. Wang, D.W. Zhang, H.-L. Lu, Ultrahigh-sensitive finlike double-sided e-skin for force direction detection, ACS Appl. Mater. Interfaces 12 (12) (2020) 14136–14144.

[33]

X. Tang, C. Wu, L. Gan, T. Zhang, T. Zhou, J. Huang, H. Wang, C. Xie, D. Zeng, Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins, Small 15 (10) (2019) 1804559.

[34]

X.-P. Li, Y. Li, X. Li, D. Song, P. Min, C. Hu, H.-B. Zhang, N. Koratkar, Z.-Z. Yu, Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets, J. Colloid Interface Sci. 542 (2019) 54–62.

[35]

J. Jia, G. Huang, J. Deng, K. Pan, Skin-inspired flexible and high-sensitivity pressure sensors based on rgo films with continuous-gradient wrinkles, Nanoscale 11 (10) (2019) 4258–4266.

[36]

H. Wei, A. Li, D. Kong, Z. Li, D. Cui, T. Li, B. Dong, Z. Guo, Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances, Adv. Compos. Hybrid Mater. 4 (1) (2021) 86–95.

[37]

J.-H. Pu, X. Zhao, X.-J. Zha, L. Bai, K. Ke, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang, W. Yang, Multilayer structured agnw/wpu-mxene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare, J. Mater. Chem. 7 (26) (2019) 15913–15923.

[38]

S. Chen, S. Xin, L. Yang, Y. Guo, W. Zhang, K. Sun, Multi-sized planar capacitive pressure sensor with ultra-high sensitivity, Nanomater. Energy 87 (2021) 106178.

[39]

Y. Ding, T. Xu, O. Onyilagha, H. Fong, Z. Zhu, Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges, ACS Appl. Mater. Interfaces 11 (7) (2019) 6685–6704.

[40]

D. Lee, H. Lee, Y. Jeong, Y. Ahn, G. Nam, Y. Lee, Highly sensitive, transparent, and durable pressure sensors based on sea-urchin shaped metal nanoparticles, Adv. Mater. 28 (42) (2016) 9364–9369.

[41]

J. Wu, H. Li, X. Lai, Z. Chen, X. Zeng, Conductive and superhydrophobic f-rgo@cnts/chitosan aerogel for piezoresistive pressure sensor, Chem. Eng. J. 386 (2020) 123998.

[42]

Y. Zhang, L. Wang, L. Zhao, K. Wang, Y. Zheng, Z. Yuan, D. Wang, X. Fu, G. Shen, W. Han, Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films, Adv. Mater. 33 (22) (2021) 2007890.

[43]

Y. Huang, X. Fan, S.C. Chen, N. Zhao, Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing, Adv. Funct. Mater. 29 (12) (2019) 1808509.

[44]

Y.S. Rim, S.H. Bae, H. Chen, N. De Marco, Y. Yang, Recent progress in materials and devices toward printable and flexible sensors, Adv. Mater. 28 (22) (2016) 4415–4440.

[45]

Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma, C. Luo, S. Wang, J. Rao, X. Hu, J. Su, Z. Zhang, Q. Huang, Y. Gao, 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor, Nanomater. Energy 50 (2018) 79–87.

[46]

J.-H. Kim, S.-R. Kim, H.-J. Kil, Y.-C. Kim, J.-W. Park, Highly conformable, transparent electrodes for epidermal electronics, Nano Lett. 18 (7) (2018) 4531–4540.

[47]

X. Sun, F. Yao, J. Li, Nanocomposite hydrogel-based strain and pressure sensors: a review, J. Mater. Chem. 8 (36) (2020) 18605–18623.

[48]

T. Huang, P. He, R. Wang, S. Yang, J. Sun, X. Xie, G. Ding, Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors, Adv. Funct. Mater. 29 (45) (2019) 1903732.

[49]

X. Hu, T. Huang, Z. Liu, G. Wang, D. Chen, Q. Guo, S. Yang, Z. Jin, J.-M. Lee, G. Ding, Conductive graphene-based e-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors, J. Mater. Chem. 8 (29) (2020) 14778–14787.

[50]

W. Li, Y. Zhou, Y. Wang, Y. Li, L. Jiang, J. Ma, S. Chen, Highly stretchable and sensitive sbs/graphene composite fiber for strain sensors, Macromol. Mater. Eng. 305 (3) (2020) 1900736.

[51]

X. Wang, S. Meng, M. Tebyetekerwa, Y. Li, J. Pionteck, B. Sun, Z. Qin, M. Zhu, Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber, Compos. Part A Appl. Sci. Manuf. 105 (2018) 291–299.

[52]

Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, J.B. Xu, Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures, ACS Nano 11 (5) (2017) 4507–4513.

[53]

Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, T.-L. Ren, Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity, ACS Nano 12 (3) (2018) 2346–2354.

[54]

Z. Yue, X. Ye, S. Liu, Y. Zhu, H. Jiang, Z. Wan, Y. Lin, C. Jia, Towards ultra-wide operation range and high sensitivity: graphene film based pressure sensors for fingertips, Biosens. Bioelectron. 139 (2019) 111296.

[55]

L.-Q. Tao, K.-N. Zhang, H. Tian, Y. Liu, D.-Y. Wang, Y.-Q. Chen, Y. Yang, T.-L. Ren, Graphene-paper pressure sensor for detecting human motions, ACS Nano 11 (9) (2017) 8790–8795.

[56]

W. Chen, X. Gui, B. Liang, R. Yang, Y. Zheng, C. Zhao, X. Li, H. Zhu, Z. Tang, Structural engineering for high sensitivity, ultrathin pressure sensors based on wrinkled graphene and anodic aluminum oxide membrane, ACS Appl. Mater. Interfaces 9 (28) (2017) 24111–24117.

[57]

J. Zhang, L.J. Zhou, H.M. Zhang, Z.X. Zhao, S.L. Dong, S. Wei, J. Zhao, Z.L. Wang, B. Guo, P.A. Hu, Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene, Nanoscale 10 (16) (2018) 7387–7395.

[58]

H. Tian, Y. Shu, X.F. Wang, M.A. Mohammad, Z. Bie, Q.Y. Xie, C. Li, W.T. Mi, Y. Yang, T.L. Ren, A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range, Sci. Rep. 5 (2015) 8603.

[59]

Y. Zhu, H. Cai, H. Ding, N. Pan, X. Wang, Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane, ACS Appl. Mater. Interfaces 11 (6) (2019) 6195–6200.

[60]

Q. Li, T. Wu, W. Zhao, J. Ji, G. Wang, Laser-induced corrugated graphene films for integrated multimodal sensors, ACS Appl. Mater. Interfaces (2021) 37433–37444.

[61]

A. Chhetry, M. Sharifuzzaman, H. Yoon, S. Sharma, X. Xuan, J.Y. Park, MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor, ACS Appl. Mater. Interfaces 11 (25) (2019) 22531–22542.

[62]

Y.J. Lu, M.W. Tian, X.T. Sun, N. Pan, F.X. Chen, S.F. Zhu, X.S. Zhang, S.J. Chen, Highly sensitive wearable 3d piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate, Compos. Part A Appl. Sci. Manuf. 117 (2019) 202–210.

[63]

Y. Pang, H. Tian, L.Q. Tao, Y.X. Li, X.F. Wang, N.Q. Deng, Y. Yang, T.L. Ren, Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure, ACS Appl. Mater. Interfaces 8 (40) (2016) 26458–26462.

[64]

J. Kuang, Z.H. Dai, L.Q. Liu, Z. Yang, M. Jin, Z. Zhang, Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors, Nanoscale 7 (20) (2015) 9252–9260.

[65]

J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko, Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli, Sci. Adv. 1 (9) (2015) 1500661.

[66]

G. Ge, Y. Cai, Q. Dong, Y. Zhang, J. Shao, W. Huang, X. Dong, A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection, Nanoscale 10 (21) (2018) 10033–10040.

[67]

Y.R. Jeong, H. Park, S.W. Jin, S.Y. Hong, S.-S. Lee, J.S. Ha, Highly stretchable and sensitive strain sensors using fragmentized graphene foam, Adv. Funct. Mater. 25 (27) (2015) 4228–4236.

[68]

M.T. Tran, T.T. Tung, A. Sachan, D. Losic, M. Castro, J.F. Feller, 3d sprayed polyurethane functionalized graphene/carbon nanotubes hybrid architectures to enhance the piezo-resistive response of quantum resistive pressure sensors, Carbon 168 (2020) 564–579.

[69]

H.B. Yao, J. Ge, C.F. Wang, X. Wang, W. Hu, Z.J. Zheng, Y. Ni, S.H. Yu, A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design, Adv. Mater. 25 (46) (2013) 6692–6698.

[70]

F.X. Niu, Z. Qin, L.Z. Min, B.A. Zhao, Y.H. Lv, X.H. Fang, K. Pan, Ultralight and hyperelastic nanofiber-reinforced MXene-graphene aerogel for high-performance piezoresistive sensor, Adv. Mater. Technol. (2021) 2100394.

[71]

X.Z. Lu, T.T. Yu, F.C. Meng, W.M. Bao, Wide-range and high-stability flexible conductive graphene/thermoplastic polyurethane foam for piezoresistive sensor applications, Adv. Mater. Techno. (2021) 2100248.

[72]

J. Wang, C.C. Zhang, D. Chen, M.Y. Sun, N. Liang, Q.L. Cheng, Y.C. Ji, H.Y. Gao, Z.J. Guo, Y. Li, D.H. Sun, Q.F. Li, H. Liu, Fabrication of a sensitive strain and pressure sensor from gold nanoparticle-assembled 3D-interconnected graphene microchannel-embedded pdms, ACS Appl. Mater. Interfaces 12 (46) (2020) 51854–51863.

[73]

L.H. Yu, Y.Y. Yi, T. Yao, Y.Z. Song, Y.R. Chen, Q.C. Li, Z. Xia, N. Wei, Z.N. Tian, B.Q. Nie, L. Zhang, Z.F. Liu, J.Y. Sun, All vn-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring, Nano. Res. 12 (2) (2019) 331–338.

[74]

A.A. Barlian, W.T. Park, , A.J. Rastegar, B.L. Pruitt, Review: semiconductor piezoresistance for microsystems, Proc IEEE Inst. Electr. Electron. Eng. 97 (3) (2009) 513–552.

[75]

L. Yu, J.C. Yeo, R.H. Soon, T. Yeo, H.H. Lee, C.T. Lim, Highly stretchable, weavable, and washable piezoresistive microfiber sensors, ACS Appl. Mater. Interfaces 10 (15) (2018) 12773–12780.

[76]

J.H. Pu, X. Zhao, X.J. Zha, L. Bai, K. Ke, R.Y. Bao, Z.Y. Liu, M.B. Yang, W. Yang, Multilayer structured Agnw/wpu-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare, J. Mater. Chem. 7 (26) (2019) 15913–15923.

[77]

J. Lee, S. Jeon, H. Seo, J.T. Lee, S. Park, Fiber-based sensors and energy systems for wearable electronics, Appl. Sci. 11 (2) (2021) 531.

[78]

J.G. Qu, N.F. He, S.V. Patil, Y.A. Wang, D. Banerjee, W. Gao, Screen printing of graphene oxide patterns onto viscose nonwovens with tunable penetration depth and electrical conductivity, ACS Appl. Mater. Interfaces 11 (16) (2019) 14944–14951.

[79]

H. Liu, Q.M. Li, Y.B. Bu, N. Zhang, C.F. Wang, C.F. Pan, L.W. Mi, Z.H. Guo, C.T. Liu, C.Y. Shen, Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor, Nanomater. Energy 66 (2019) 104143.

[80]

N. Karim, S. Afroj, S.R. Tan, P. He, A. Fernando, C. Carr, K.S. Novoselov, Scalable production of graphene-based wearable e-textiles, ACS Nano 11 (12) (2017) 12266–12275.

[81]

Y. Cheng, R. Wang, J. Sun, L. Gao, A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion, Adv. Mater. 27 (45) (2015) 7365–7371.

[82]

X. Wang, Y. Qiu, W. Cao, P. Hu, Highly stretchable and conductive core–sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors, Chem. Mater. 27 (20) (2015) 6969–6975.

[83]

H. Zhang, W. Wu, J. Cao, M. Tong, H. Xu, Z. Mao, H. Ma, Magnetic induced wet-spinning of graphene oxide sheets grafted with ferroferric oxide and the ultra-strain and elasticity of sensing fiber, Compos. B Eng. 170 (2019) 1–10.

[84]

Y. Lu, W. He, T. Cao, H. Guo, Y. Zhang, Q. Li, Z. Shao, Y. Cui, X. Zhang, Elastic, conductive, polymeric hydrogels and sponges, Sci. Rep. 4 (1) (2015) 5792.

[85]

C. Chen, J. Song, S. Zhu, Y. Li, Y. Kuang, J. Wan, D. Kirsch, L. Xu, Y. Wang, T. Gao, Y. Wang, H. Huang, W. Gan, A. Gong, T. Li, J. Xie, L. Hu, Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge, Inside Chem. 4 (3) (2018) 544–554.

[86]

K. Xia, C. Wang, M. Jian, Q. Wang, Y. Zhang, CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor, Nano. Res. 11 (2) (2017) 1124–1134.

[87]

M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, Y. Zhang, Flexible and highly sensitive pressure sensors based on bionic hierarchical structures, Adv. Funct. Mater. 27 (9) (2017) 1606066.

[88]

Y. Wang, T. Yang, J. Lao, R. Zhang, Y. Zhang, M. Zhu, X. Li, X. Zang, K. Wang, W. Yu, H. Jin, L. Wang, H. Zhu, Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition, Nano. Res. 8 (5) (2015) 1627–1636.

[89]

B. Zhu, Z. Niu, H. Wang, W.R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, X. Chen, Microstructured graphene arrays for highly sensitive flexible tactile sensors, Small 10 (18) (2014) 3625–3631.

[90]

Z. Chen, T. Ming, M.M. Goulamaly, H. Yao, D. Nezich, M. Hempel, M. Hofmann, J. Kong, Enhancing the sensitivity of percolative graphene films for flexible and transparent pressure sensor arrays, Adv. Funct. Mater. 26 (28) (2016) 5061–5067.

[91]

S.H. Chae, W.J. Yu, J.J. Bae, D.L. Duong, D. Perello, H.Y. Jeong, Q.H. Ta, T.H. Ly, Q.A. Vu, M. Yun, X. Duan, Y.H. Lee, Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors, Nat. Mater. 12 (5) (2013) 403–409.

[92]

R. You, Y.Q. Liu, Y.L. Hao, D.D. Han, Y.L. Zhang, Z. You, Laser fabrication of graphene-based flexible electronics, Adv. Mater. 32 (15) (2020) 1901981.

[93]

E.F. Hacopian, Y. Yang, B. Ni, Y. Li, X. Li, Q. Chen, H. Guo, J.M. Tour, H. Gao, J. Lou, Toughening graphene by integrating carbon nanotubes, ACS Nano 12 (8) (2018) 7901–7910.

[94]

H. Ren, L. Zheng, G. Wang, X. Gao, Z. Tan, J. Shan, L. Cui, K. Li, M. Jian, L. Zhu, Y. Zhang, H. Peng, D. Wei, Z. Liu, Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors, ACS Nano 13 (5) (2019) 5541–5548.

[95]

J. Zhou, H. Liu, Y. Sun, C. Wang, K. Chen, Self-healing titanium dioxide nanocapsules-graphene/multi-branched polyurethane hybrid flexible film with multifunctional properties toward wearable electronics, Adv. Funct. Mater. (2021) 2011133.

[96]

Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz, X. Li, Y. Fu, Y. Wei, G. Deng, Y. Yang, X. Wu, T.-L. Ren, Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring, ACS Nano 14 (8) (2020) 10104–10114.

[97]

Y. Yang, Z. Cao, P. He, L. Shi, G. Ding, R. Wang, J. Sun, Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response, Nanomater. Energy 66 (2019) 104134.

[98]

C. Yang, Y. Huang, H. Cheng, L. Jiang, L. Qu, Rollable, stretchable, and reconfigurable graphene hygroelectric generators, Adv. Mater. 31 (2) (2019) 1805705.

[99]

W. Wang, B. Han, Y. Zhang, Q. Li, Y.L. Zhang, D.D. Han, H.B. Sun, Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect, Adv. Funct. Mater. 31 (1) (2021) 2006179.

[100]

Y. Li, D.X. Luong, J. Zhang, Y.R. Tarkunde, C. Kittrell, F. Sargunaraj, Y. Ji, C.J. Arnusch, J.M. Tour, Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces, Adv. Mater. 29 (27) (2017) 1700496.

[101]

R. Rahimi, M. Ochoa, W. Yu, B. Ziaie, Highly stretchable and sensitive unidirectional strain sensor via laser carbonization, ACS Appl. Mater. Interfaces 7 (8) (2015) 4463–4470.

[102]

S. Luo, P.T. Hoang, T. Liu, Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays, Carbon 96 (2016) 522–531.

[103]

L.-Q. Tao, H. Tian, Y. Liu, Z.-Y. Ju, Y. Pang, Y.-Q. Chen, D.-Y. Wang, X.-G. Tian, J.-C. Yan, N.-Q. Deng, Y. Yang, T.-L. Ren, An intelligent artificial throat with sound-sensing ability based on laser induced graphene, Nat. Commun. 8 (1) (2017) 14579.

[104]

Z. Yan, L. Wang, Y. Xia, R. Qiu, W. Liu, M. Wu, Y. Zhu, S. Zhu, C. Jia, M. Zhu, R. Cao, Z. Li, X. Wang, Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing, Adv. Funct. Mater. 31 (23) (2021) 2100709.

[105]

B. Sun, R.N. McCay, S. Goswami, Y. Xu, C. Zhang, Y. Ling, J. Lin, Z. Yan, Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges, Adv. Mater. 30 (50) (2018) 1804327.

[106]

X. Jiang, Z. Ren, Y. Fu, Y. Liu, R. Zou, G. Ji, H. Ning, Y. Li, J. Wen, H.J. Qi, C. Xu, S. Fu, J. Qiu, N. Hu, Highly compressible and sensitive pressure sensor under large strain based on 3d porous reduced graphene oxide fiber fabrics in wide compression strains, ACS Appl. Mater. Interfaces 11 (40) (2019) 37051–37059.

[107]

Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu, C. Luo, H. Zhang, F. Cheng, J. Rao, X. Hu, J. Su, Y. Gao, Highly self-healable 3d microsupercapacitor with MXene-graphene composite aerogel, ACS Nano 12 (5) (2018) 4224–4232.

[108]

J. Zhu, A.S. Childress, M. Karakaya, S. Dandeliya, A. Srivastava, Y. Lin, A.M. Rao, R. Podila, Defect-engineered graphene for high-energy- and high-power-density supercapacitor devices, Adv. Mater. 28 (33) (2016) 7185–7192.

[109]

X. Zuo, K. Chang, J. Zhao, Z. Xie, H. Tang, B. Li, Z. Chang, Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material, J. Mater. Chem. A. 4 (1) (2016) 51–58.

[110]

G. Zhang, Y. Han, C. Shao, N. Chen, G. Sun, X. Jin, J. Gao, B. Ji, H. Yang, L. Qu, Processing and manufacturing of graphene-based microsupercapacitors, Mater. Chem. Front. 2 (10) (2018) 1750–1764.

[111]

T. Zhao, S. Zhang, Y. Guo, Q. Wang, TiC2: a new two-dimensional sheet beyond MXenes, Nanoscale 8 (1) (2016) 233–242.

[112]

J. Zhao, Y. Zhang, X. Zhao, R. Wang, J. Xie, C. Yang, J. Wang, Q. Zhang, L. Li, C. Lu, Y. Yao, Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities, Adv. Funct. Mater. 29 (26) (2019) 1900809.

[113]

Q. Wang, X. Pan, C. Lin, H. Gao, S. Cao, Y. Ni, X. Ma, Modified Ti3C2Tx (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics, Chem. Eng. J. 401 (2020) 126129.

[114]

B. Lu, F. Liu, G. Sun, J. Gao, T. Xu, Y. Xiao, C. Shao, X. Jin, H. Yang, Y. Zhao, Z. Zhang, L. Jiang, L. Qu, Compact assembly and programmable integration of supercapacitors, Adv. Mater. 32 (6) (2020) 1907005.

[115]

S. Zheng, J. Ma, K. Fang, S. Li, J. Qin, Y. Li, J. Wang, L. Zhang, F. Zhou, F. Liu, K. Wang, Z.S. Wu, High-voltage potassium ion micro-supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system, Adv. Energy Mater. 11 (17) (2021) 2003835.

[116]

Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao, J. Rao, S. Luo, J. Wang, X. Jiang, Z. Liu, N. Liu, Y. Gao, 3d synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor, ACS Nano 12 (4) (2018) 3209–3216.

[117]

Z. Zhang, Y. Chen, S. He, J. Zhang, X. Xu, Y. Yang, F. Nosheen, F. Saleem, W. He, X. Wang, Hierarchical Zn/Ni-MoF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions, Angew. Chem. 126 (46) (2014) 12725–12729.

[118]

Y.-L. Ding, P. Kopold, K. Hahn, P.A. van Aken, J. Maier, Y. Yu, Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium-sulfur batteries, Adv. Funct. Mater. 26 (7) (2016) 1112–1119.

[119]

P. Min, X. Li, P. Liu, J. Liu, X.Q. Jia, X.P. Li, Z.Z. Yu, Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors, Adv. Funct. Mater. (2021) 2103703.

[120]

X. Tang, W. Yang, S. Yin, G. Tai, M. Su, J. Yang, H. Shi, D. Wei, J. Yang, Controllable graphene wrinkle for a high-performance flexible pressure sensor, ACS Appl. Mater. Interfaces 13 (17) (2021) 20448–20458.

[121]

J. Huang, H. Wang, Z. Li, X. Wu, J. Wang, S. Yang, Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays, J. Mater. Chem. C 7 (24) (2019) 7386–7394.

[122]

H.J. Lee, J.C. Yang, J. Choi, J. Kim, G.S. Lee, S.P. Sasikala, G.-H. Lee, S.-H.K. Park, H.M. Lee, J.Y. Sim, S. Park, S.O. Kim, Hetero-dimensional 2D Ti3C2Tx mxene and 1d graphene nanoribbon hybrids for machine learning-assisted pressure sensors, ACS Nano 15 (6) (2021) 10347–10356.

[123]

Z. Ma, A. Wei, J. Ma, L. Shao, H. Jiang, D. Dong, Z. Ji, Q. Wang, S. Kang, Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors, Nanoscale 10 (15) (2018) 7116–7126.

[124]

A. Tewari, S. Gandla, S. Bohm, C.R. McNeill, D. Gupta, Highly exfoliated MWNT-rGO ink-wrapped polyurethane foam for piezoresistive pressure sensor applications, ACS Appl. Mater. Interfaces 10 (6) (2018) 5185–5195.

[125]

Y.A. Samad, Y. Li, A. Schiffer, S.M. Alhassan, K. Liao, Graphene foam developed with a novel two-step technique for low and high strains and pressure-sensing applications, Small 11 (20) (2015) 2380–2385.

[126]

S. Wu, R.B. Ladani, J. Zhang, K. Ghorbani, X. Zhang, A.P. Mouritz, A.J. Kinloch, C.H. Wang, Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites, ACS Appl. Mater. Interfaces 8 (37) (2016) 24853–24861.

[127]

K. Wu, X. Li, Wearable pressure sensor for athletes' full-range motion signal, Mater. Res. Express 7 (2020) 105003.

[128]

Z. Yang, Y. Pang, X.L. Han, Y. Yang, J. Ling, M. Jian, Y. Zhang, Y. Yang, T.L. Ren, Graphene textile strain sensor with negative resistance variation for human motion detection, ACS Nano 12 (9) (2018) 9134–9141.

[129]

Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang, Z.L. Wang, Hierarchically patterned self-powered sensors for multifunctional tactile sensing, Sci. Adv. 6 (34) (2020) 9083.

[130]

T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Organic nonvolatile memory transistors for flexible sensor arrays, Science 326 (5959) (2009) 1516–1519.

[131]

K. Takei, T. Takahashi, J.C. Ho, H. Ko, A.G. Gillies, P.W. Leu, R.S. Fearing, A. Javey, Nanowire active-matrix circuitry for low-voltage macroscale artificial skin, Nat. Mater. 9 (10) (2010) 821–826.

[132]

M. Zhu, Z. Sun, Z. Zhang, Q. Shi, T. He, H. Liu, T. Chen, C. Lee, Haptic-feedback smart glove as a creative human-machine interface (hmi) for virtual/augmented reality applications, Sci. Adv. 6 (19) (2020) 8693.

[133]

S. Liu, X. Wu, D. Zhang, C. Guo, P. Wang, W. Hu, X. Li, X. Zhou, H. Xu, C. Luo, J. Zhang, J. Chu, Ultrafast dynamic pressure sensors based on graphene hybrid structure, ACS Appl. Mater. Interfaces 9 (28) (2017) 24148–24154.

Nano Materials Science
Pages 247-264
Cite this article:
Chen K-Y, Xu Y-T, Zhao Y, et al. Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries. Nano Materials Science, 2023, 5(3): 247-264. https://doi.org/10.1016/j.nanoms.2021.11.003

255

Views

9

Downloads

24

Crossref

27

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 31 August 2021
Accepted: 01 November 2021
Published: 04 January 2022
© 2021 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return