AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Phase transfer-based high-efficiency recycling of precious metal electrocatalysts

Qing ZengaShaonan TianaYu ZhangaHui LiuaDong Chena( )Xinlong Tianb ( )Chaoquan Hua,cJun Yanga,c,d( )
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211100, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
Show Author Information

HIGHLIGHTS

● Recycling precious metals is beneficial to optimize the resource utilization.

● Phase transfer-based efficient recycling of Pd and Pt electrocatalysts.

● High transfer efficiency and recovery rate for the electrocatalysts in each cycle.

● The recycled Pd and Pt are highly active towards typical electrochemical reactions.

Graphical Abstract

Abstract

Recycling precious metals with high-efficiency is undoubtedly beneficial to optimize resource utilization for environmental remediation and sustainable development. Herein, we report an efficient route to recycle the palladium (Pd) and platinum (Pt) electrocatalysts using a phase transfer method. This strategy involves acidic dissolution of deactivated precious metal (Pd/Pt) electrocatalysts from their loading substrates, mixing with an ethanolic solution of dodecylamine (DDA), subsequent extraction of metal ions into a non-polar organic phase, and final reduction by sodium borohydride to reproduce high-performance electrocatalysts towards typical electrochemical reactions, e.g., oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR). In specific, the transfer efficiencies are up to 98% and the final recovery rate is over 85% for Pd and Pt electrocatalysts in each cycle. This approach symbolizes a facile and efficient way to recover precious metals, which might be applied to recycling a wide range of metals in various realms after appropriate modifications.

References

[1]

Y. Cao, R. Ran, X. Wu, Z. Si, F. Kang, D. Weng, Progress on metal-support interactions in Pd-based catalysts for automobile emission control, J. Environ. Sci. 125 (2023) 401–426.

[2]

Y. Li, Y. Sun, Y. Qin, W. Zhang, L. Wang, M. Luo, H. Yang, S. Guo, Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials, Adv. Energy Mater. 10 (2020) 1903120.

[3]

D. Chen, Y. Wang, D. Liu, H. Liu, C. Qian, H. He, J. Yang, Surface composition dominates the electrocatalytic reduction of CO2 on ultrafine CuPd nanoalloys, Carbon Energy 2 (2020) 443−451.

[4]

X. Wei, C. Liu, H. Cao, P. Ning, W. Jin, Z. Yang, H. Wang, Z. Sun, Understanding the features of PGMs in spent ternary automobile catalysts for development of cleaner recovery technology, J. Clean. Prod. 239 (2019) 118031.

[5]

Y. Ding, S. Zhang, B. Liu, H. Zheng, C.-C. Chang, C. Ekberg, Recovery of precious metals from electronic waste and spent catalysts: a review, Resour. Conserv. Recycl. 141 (2019) 284−298.

[6]

J. Tang, D. Chen, Q. Yao, J. Xie, J. Yang, Recent advances in noble metal-based nanocomposites for electrochemical reactions, Mater. Today Energy 6 (2017) 115−127.

[7]

L.A. Diaz, T.E. Lister, J.A. Parkman, G.G. Clark, Comprehensive process for the recovery of value and critical materials from electronic waste, J. Clean. Prod. 125 (2016) 236−244.

[8]

B. Wu, N. Zheng, Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications, Nano Today 8 (2013) 168−197.

[9]

T. Wang, A. Chutia, D.J.T. Brett, P.R. Shearing, G. He, G. Chai, I.P. Parkin, Palladium alloys used as electrocatalysts for the oxygen reduction reaction, Energy Environ. Sci. 14 (2021) 2639−2669.

[10]

M.A.F. Akhairi, S.K. Kamarudin, Catalysts in direct ethanol fuel cell (DEFC): an overview, Int. J. Hydrogen Energy 41 (2016) 4214−4228.

[11]

S. Bhogeswararao, D. Srinivas, Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts, J. Catal. 327 (2015) 65−77.

[12]

X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W. Xing, Recent advances in catalysts for direct methanol fuel cells, Energy Environ. Sci. 4 (2011) 2736−2753.

[13]

M.S. Spencer, M.V. Twigg, Metal catalyst design and preparation in control of deactivation, Annu. Rev. Mater. Res. 35 (2005) 427−464.

[14]

C.H. Bartholomew, Mechanisms of catalyst deactivation, Appl. Catal. Gen. 212 (2001) 17−60.

[15]

J.C.C. Gomez, R. Moliner, M.J. Lazaro, Palladium- based catalysts as electrodes for direct methanol fuel cells: a last ten years review, Catalysts 6 (2016) 130.

[16]

A. Brouzgou, S.Q. Song, P. Tsiakaras, Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges and prospects, Appl. Catal. B Environ. 127 (2012) 371−388.

[17]

X.P. Chen, D.Z. Kang, L. Cao, J.Z. Li, T. Zhou, H.R. Ma, Separation and recovery of valuable metals from spent lithium ion batteries: simultaneous recovery of Li and Co in a single step, Separ. Purif. Technol. 210 (2019) 690−697.

[18]

S.H. Li, C.Y. He, H.W. Liu, K. Li, F. Liu, Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids, J. Chromatogr. B 826 (2005) 58−62.

[19]

S. Mir, N. Dhawan, A comprehensive review on the recycling of discarded printed circuit boards for resource recovery, Resour. Conserv. Recycl. 178 (2022) 106027.

[20]

R. Sommerville, P.C. Zhu, M.A. Rajaeifar, Q. Heidrich, V. Goodship, E. Kendrick, A qualitative assessment of lithium ion battery recycling processes, Resour. Conserv. Recycl. 165 (2021) 105219.

[21]

C. Liu, S.C. Sun, X.P. Zhu, G.F. Tu, Metals smelting-collection method for recycling of platinum group metals from waste catalysts: a mini review, Waste Manag. Res. 39 (2021) 43−52.

[22]

Y.J. Ding, H.D. Zheng, S.G. Zhang, B. Liu, B.Y. Wu, Z.M. Jian, Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection, Resour. Conserv. Recycl. 155 (2020) 104644.

[23]

H. Zheng, Y. Ding, Q. Wen, B. Liu, S. Zhang, Separation and purification of platinum group metals from aqueous solution: recent developments and industrial applications, Resour. Conserv. Recycl. 167 (2021) 105417.

[24]

H. Dong, J. Zhao, J. Chen, Y. Wu, B. Li, Recovery of platinum group metals from spent catalysts: a review, Int. J. Miner. Process. 145 (2015) 108−113.

[25]

J. Chen, K. Huang, A new technique for extraction of platinum group metals by pressure cyanidation, Hydrometallurgy 82 (2006) 164−171.

[26]

M.K. Jha, D. Gupta, J.C. Lee, V. Kumar, J. Jeong, Solvent extraction of platinum using amine based extractants in different solutions: a review, Hydrometallurgy 142 (2014) 60−69.

[27]

P.P. Sun, M.S. Lee, Separation of Pt from hydrochloric acid leaching solution of spent catalysts by solvent extraction and ion exchange, Hydrometallurgy 110 (2011) 91−98.

[28]

Z.X. Xu, Y.L. Zhao, P.Y. Wang, X.Q. Yan, M.M. Cai, Y. Yang, Extraction of Pt(Ⅳ), Pt(Ⅱ), and Pd(Ⅱ) from acidic chloride media using imidazolium-based task-specific polymeric ionic liquid, Ind. Eng. Chem. Res. 58 (2019) 1779−1786.

[29]

A. Mhaske, P. Dhadke, Liquid-liquid extraction and separation of rhodium(Ⅲ) from other platinum group metals with Cyanex 925, Separ. Sci. Technol. 36 (2001) 3253−3265.

[30]

M. Maeda, H. Narita, C. Tokoro, M. Tanaka, R. Motokawa, H. Shiwaku, T. Yaita, Selective extraction of Pt(Ⅳ) over Fe(Ⅲ) from HCl with an amide-containing tertiary amine compound, Separ. Sci. Technol. 177 (2017) 176−181.

[31]

B. Gupta, I. Singh, H. Mahandra, Extraction and separation studies on Pt(Ⅳ), Ir(Ⅲ) and Rh(Ⅲ) using sulphur containing extractant, Separ. Purif. Technol. 132 (2014) 102−109.

[32]

M. Rzelewska-Piekut, M. Regel-Rosocka, Separation of Pt(Ⅳ), Pd(Ⅱ), Ru(Ⅲ) and Rh(Ⅲ) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids, Separ. Purif. Technol. 212 (2019) 791−801.

[33]

Y. Tong, C. Wang, J. Li, Y. Yang, Extraction mechanism, behavior and stripping of Pd(Ⅱ) by pyridinium-based ionic liquid from hydrochloric acid medium, Hydrometallurgy 147–148 (2014) 164–169.

[34]

D. Chen, P. Cui, H. Cao, J. Yang, A 1-dodecanethiol-based phase transfer protocol for the highly efficient extraction of noble metal ions from aqueous phase, J. Environ. Sci. 29 (2015) 146−150.

[35]

J. Yang, J.Y. Lee, J.Y. Ying, Phase transfer and its applications in nanotechnology, Chem. Soc. Rev. 40 (2011) 1672−1696.

[36]

J. Yang, E.H. Sargent, S.O. Kelley, J.Y. Ying, A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis, Nat. Mater. 8 (2009) 683−689.

[37]

D. Tian, H. Li, S.C. Wu, F. Jona, P.M. Marcus, Atomic and electronic-structure of thin-films of Mn on Pd, Phys. Rev. B 45 (1992) 3749−3754.

[38]

L.H. Jiang, G.Q. Sun, S.G. Sun, J.G. Liu, S.H. Tang, H.Q. Li, B. Zhou, Q. Xin, Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation, Electrochim. Acta 50 (2005) 5384−5389.

[39]

J. Bai, D. Liu, J. Yang, Y. Chen, A minireview on nanocatalysts for electrocatalytic oxidation of ethanol, ChemSusChem 12 (2019) 2117−2132.

[40]

X. Zhou, Y. Ma, Y. Ge, S. Zhu, Y. Cui, B. Chen, L. Liao, Q. Yun, Z. He, H. Long, L. Li, B. Huang, Q. Luo, L. Zhai, X. Wang, L. Bai, G. Wang, Z. Guan, Y. Chen, C.-S. Lee, J. Wang, C. Ling, M. Shao, Z. Fan, H. Zhang, Preparation of Au@Pd core-shell nanorods with fcc-2H- fcc heterophase for highly efficient electrocatalytic alcohol oxidation, J. Am. Chem. Soc. 144 (2022) 547−555.

[41]

Q. Zeng, D. Liu, H. Liu, L. Xu, P. Cui, D. Chen, J. Wang, J. Yang, Gold-catalyzed reduction of metal ions towards core-shell structures with sub-nanometer shells, Cell Rep. Phys. Sci. 3 (2022) 101105.

[42]

A. Chen, P. Holt-Hindle, Platinum-based nanostructured materials: synthesis, properties, and applications, Chem. Rev. 110 (2010) 3767–3804.

[43]

J. Qu, F. Ye, D. Chen, Y. Feng, Q. Yao, H. Liu, J. Xie, J. Yang, Platinum-based heterogeneous nanomaterials via wet-chemistry approaches towards electrocatalytic applications, Adv. Colloid Interface Sci. 230 (2016) 29−53.

[44]

J. Li, Q. Zhou, M. Yue, S. Chen, J. Deng, X. Ping, Y. Li, Q. Liao, M. Shao, Z. Wei, Cross-linked multi-atom Pt catalyst for highly efficient oxygen reduction catalysis, Appl. Catal. B Environ. 284 (2021) 119728.

[45]

F. Xiao, Y.-C. Wang, Z.-P. Wu, G. Chen, F. Yang, S. Zhu, K. Siddharth, Z. Kong, A. Lu, J. Li, C.-J. Zhong, Z.-Y. Zhou, M. Shao, Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells, Adv. Mater. 33 (2021) 2006292.

[46]

F. Xiao, Q. Wang, G.-L. Xu, X. Qin, I. Hwang, C.-J. Sun, M. Liu, W. Hua, H.-W. Wu, S. Zhu, J. Li, J.G. Wang, Y. Zhu, D. Wu, Z. Wei, M. Gu, K. Amine, M. Shao, Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells, Nat. Catal. 5 (2022) 503–512.

[47]

D. Liu, Q. Zeng, C. Hu, D. Chen, H. Liu, Y. Han, L. Xu, Q. Zhang, J. Yang, Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation, Nano Res. Energy 1 (2022) e9120017.

[48]

J. Xi, K. Meng, Y. Li, M. Wang, Q. Liao, Z. Wei, M. Shao, J. Wang, Performance improvement of ultra-low Pt proton exchange membrane fuel cell by catalyst layer structure optimization, Chin. J. Chem. Eng. 41 (2022) 473−479.

Green Chemical Engineering
Pages 68-74
Cite this article:
Zeng Q, Tian S, Zhang Y, et al. Phase transfer-based high-efficiency recycling of precious metal electrocatalysts. Green Chemical Engineering, 2024, 5(1): 68-74. https://doi.org/10.1016/j.gce.2022.10.001

332

Views

8

Downloads

3

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 06 September 2022
Revised: 10 October 2022
Accepted: 17 October 2022
Published: 19 October 2022
© 2022 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return