Journal Home > Volume 10 , Issue 2

Ulcerative colitis (UC) is a chronic systematic inflammation disorder with increasing incidence, unknown pathogenesis, limited drug treatment, and abundant medical expenses. Dietary intake, as a daily indispensable environment factor, is closely related to UC pathogenesis and prevention. The underlying interactions between dietary intake and UC progression are implicated with the modulation of gut microbiome as well as microbial metabolites, suggesting the complex and systematic characteristics of UC. However, the triangular relationships with dietary intake, gut microbiota homeostasis, and UC have not been well summarized so far. Here we review the recent studies of dietary intake on the regulation of gut microbiome homeostasis as well as modulation of UC progression. These findings suggest that varieties in dietary patterns result in the production of diverse microbial fermentation metabolites, which contribute to gut microbiome homeostasis through multiple manipulations including immune modulation, inflammation restriction as well as epithelial barrier maintenance, thus finally determine the fate of UC progression and give implications for functional food development for prevention and treatment of UC patients.


menu
Abstract
Full text
Outline
About this article

Internal connections between dietary intake and gut microbiota homeostasis in disease progression of ulcerative colitis: a review

Show Author's information Wen ZengaDong HeaYifan XingaJunyu LiuaNan SuaChong Zhanga,bYi Wanga( )Xinhui Xinga,b,c( )
MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Centre for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China

Peer review under responsibility of KeAi Communications Co., Ltd

Abstract

Ulcerative colitis (UC) is a chronic systematic inflammation disorder with increasing incidence, unknown pathogenesis, limited drug treatment, and abundant medical expenses. Dietary intake, as a daily indispensable environment factor, is closely related to UC pathogenesis and prevention. The underlying interactions between dietary intake and UC progression are implicated with the modulation of gut microbiome as well as microbial metabolites, suggesting the complex and systematic characteristics of UC. However, the triangular relationships with dietary intake, gut microbiota homeostasis, and UC have not been well summarized so far. Here we review the recent studies of dietary intake on the regulation of gut microbiome homeostasis as well as modulation of UC progression. These findings suggest that varieties in dietary patterns result in the production of diverse microbial fermentation metabolites, which contribute to gut microbiome homeostasis through multiple manipulations including immune modulation, inflammation restriction as well as epithelial barrier maintenance, thus finally determine the fate of UC progression and give implications for functional food development for prevention and treatment of UC patients.

Keywords: Ulcerative colitis, Gut microbiome, Dietary intake, Metabolite, Homeostasis

References(162)

[1]

M. Gajendran, P. Loganathan, G. Jimenez, et al., A comprehensive review and update on ulcerative colitis, Dis. Mon. 65 (12) (2019) 100851. https://doi.org/10.1016/j.disamonth.2019.02.004.

[2]

R. Ungaro, S. Mehandru, P.B. Allen, et al., Ulcerative colitis, Lancet 389 (2017) 1756-1770. https://doi.org/10.1016/S0140-6736(16)32126-2.

[3]

C. Abraham, J.H. Cho, Inflammatory bowel disease, N. Engl. J. Med. 21 (361) (2009) 2066-2078. https://doi.org/10.1056/NEJMra020831.

[4]

J.D. Feuerstein, A.S. Cheifetz, Ulcerative colitis: epidemiology, diagnosis, and management, Mayo Clin. Proc. 89 (11) (2014) 1553-1563. https://doi.org/10.1016/j.mayocp.2014.07.002.

[5]

D.D. Mijač, G.L.J. Janković, J. Jorga, et al., Nutritional status in patients with active inflammatory bowel disease: prevalence of malnutrition and methods for routine nutritional assessment, Eur. J. Intern. Med. 21 (4) (2010) 315-319. https://doi.org/10.1016/j.ejim.2010.04.012.

[6]

L. Beaugerie, S.H. Itzkowitz, Cancers complicating inflammatory bowel disease, N. Engl. J. Med. 373 (2) (2015) 195. https://doi.org/10.1056/NEJMra1403718.

[7]

C. Ott, J. Schoelmerich, Extraintestinal manifestations and complications in IBD, Nat. Rev. Gastro. Hepat. 10 (10) (2013) 585-595. https://doi.org/10.1038/nrgastro.2013.117.

[8]

G.G. Kaplan, S.C. Ng, Understanding and preventing the global increase of inflammatory bowel disease, Gastroenterology 152 (2) (2017) 313-321. https://doi.org/10.1053/j.gastro.2016.10.020.

[9]

J. Sykora, R. Pomahacova, M. Kreslova, et al., Current global trends in the incidence of pediatric-onset inflammatory bowel disease, World J. Gastroenterol. 24 (25) (2018) 2741-2763. https://doi.org/10.3748/wjg.v24.i25.2741.

[10]

S.C. Ng, H.Y. Shi, N. Hamidi, et al., Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies, Lancet 390 (10114) (2017) 2769-2778. https://doi.org/10.1016/S0140-6736(17)32448-0.

[11]

H. Yang, Y. Li, W. Wu, et al., The incidence of inflammatory bowel disease in Northern China: a prospective population-based study, Plos One 9 (7) (2014) e101296. https://doi.org/10.1371/journal.pone.0101296.

[12]

S.C. Ng, W. Tang, J.Y. Ching, et al., Incidence and phenotype of inflammatory bowel disease based on results from the Asia-Pacific Crohn's and Colitis Epidemiology Study, Gastroenterology 145 (1) (2013) 158-165. https://doi.org/10.1053/j.gastro.2013.04.007.

[13]

A. Kornbluth, D.B. Sachar, Ulcerative colitis practice guidelines in adults: American College Of Gastroenterology, Practice Parameters Committee, Am. J. Gastroenterol. 105(3) (2010) 501-523, 524. https://doi.org/10.1038/ajg.2009.727.

[14]

K. Matsuoka, T. Kobayashi, F. Ueno, et al., Evidence-based clinical practice guidelines for inflammatory bowel disease, J. Gastroenterol. 53 (3) (2018) 305-353. https://doi.org/10.1007/s00535-018-1439-1.

[15]

C. Mowat, A. Cole, A. Windsor, et al., Guidelines for the management of inflammatory bowel disease in adults, Gut 60 (5) (2011) 571-607. http://dx.doi.org/10.1136/gut.2010.224154.

[16]

P. Andersson, S. Ouml, J.D. Derholm, Surgery in ulcerative colitis: indication and timing, Dig. Dis. 27 (3) (2009) 335-340. https://doi.org/10.1159/000228570.

[17]

T.B. Gibson, E. Ng, R.J. Ozminkowski, et al., The direct and indirect cost burden of Crohn's disease and ulcerative colitis, J. Occup. Environ. Med. 50 (11) (2008) 1261-1272. https://doi.org/10.1097/JOM.0b013e318181b8ca.

[18]

G.R. Lichtenstein, A. Shahabi, S.A. Seabury, et al., Lifetime economic burden of Crohn's disease and ulcerative colitis by age at diagnosis, Clin. Gastroenterol. H. 18 (4) (2019) 889-897. https://doi.org/10.1016/j.cgh.2019.07.022.

[19]

R.D. Cohen, A.P. Yu, E.Q. Wu, et al., Systematic review: the costs of ulcerative colitis in Western countries, Aliment. Pharm. Ther. 31 (7) (2010) 693-707. https://doi.org/10.1111/j.1365-2036.2010.04234.x.

[20]

A. Kaser, S. Zeissig, R.S. Blumberg, Inflammatory bowel disease, Annu. Rev. Immunol. 28 (2010) 573-621. https://doi.org/10.1146/annurev-immunol-030409-101225.

[21]

M.F. Neurath, Targeting immune cell circuits and trafficking in inflammatory bowel disease, Nat. Immunol. 20 (8) (2019) 970-979. https://doi.org/10.1038/s41590-019-0415-0.

[22]

N. Tatiya-aphiradee, W. Chatuphonprasert, K. Jarukamjorn, Immune response and inflammatory pathway of ulcerative colitis, J. Basic Clin. Physiol. Pharmacol. 39 (1) (2018) 1-10. https://doi.org/10.1515/jbcpp-2018-0036.

[23]

S. Zhang, S. Wang, C. Miao, Influence of microbiota on intestinal immune system in ulcerative colitis and its intervention, Front. Immunol. 8 (2017) 1674. https://doi.org/10.3389/fimmu.2017.01674.

[24]

H. Huang, M. Fang, L. Jostins, et al., Fine-mapping inflammatory bowel disease loci to single-variant resolution, Nature 547 (7662) (2017) 173-178. https://doi.org/10.1038/nature22969.

[25]

J.H. Cho, The genetics and immunopathogenesis of inflammatory bowel disease, Nat. Rev. Immunol. 8 (6) (2008) 458-466. https://doi.org/10.1038/nri2340.

[26]

B. Khor, A. Gardet, R.J. Xavier, Genetics and pathogenesis of inflammatory bowel disease, Nature 474 (7351) (2011) 307-317. https://doi.org/10.1038/nature10209.

[27]

A.I. Thompson, C.W. Lees, Genetics of ulcerative colitis, Inflamm. Bowel Dis. 17 (3) (2011) 831-848. https://doi.org/10.1002/ibd.21375.

[28]

A.N. Ananthakrishnan, C.N. Bernstein, D. Iliopoulos, et al., Environmental triggers in IBD: a review of progress and evidence, Nat. Rev. Gastro. Hepat. 15 (1) (2018) 39-49. https://doi.org/10.1038/nrgastro.2017.136.

[29]

R.B. Gearry, IBD and environment: are there differences between East and West, Dig. Dis. 34 (1–2) (2016) 84-89. https://doi.org/10.1159/000442933.

[30]

A.N. Ananthakrishnan, Epidemiology and risk factors for IBD, Nat. Rev. Gastro. Hepat. 12 (4) (2015) 205-217. https://doi.org/10.1038/nrgastro.2015.34.

[31]

I.A. Trindade, C. Ferreira, J. Pinto-Gouveia, Ulcerative colitis symptomatology and depression: the exacerbator role of maladaptive psychological processes, Dig. Dis. Sci. 60 (12) (2015) 3756-3763. https://doi.org/10.1007/s10620-015-3786-6.

[32]

A.R. Barclay, R.K. Russell, M.L. Wilson, et al., Systematic review: the role of breastfeeding in the development of pediatric inflammatory bowel disease, J. Pediatr. 155 (3) (2009) 421-426. https://doi.org/10.1016/j.jpeds.2009.03.017.

[33]

H. Khalili, S.S.M. Chan, P. Lochhead, et al., The role of diet in the aetiopathogenesis of inflammatory bowel disease, Nat. Rev. Gastroenterol. Hepatol. 15 (9) (2018) 525-535. https://doi.org/10.1038/s41575-018-0022-9.

[34]

A.N. Ananthakrishnan, H. Khalili, G.G. Konijeti, et al., Long-term intake of dietary fat and risk of ulcerative colitis and Crohn's disease, Gut 63 (5) (2014) 776-784. https://doi.org/10.1136/gutjnl-2013-305304.

[35]

A. Racine, F. Carbonnel, S.S.M. Chan, et al., Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC Study, Inflamm. Bowel Dis. 22 (2) (2016) 345-354. https://doi.org/10.1097/MIB.0000000000000638.

[36]

X. Long, Y. Pan, X. Zhao, Prophylactic effect of Kudingcha polyphenols on oxazolone induced colitis through its antioxidant capacities, Food Sci. Hum. Wellness 7 (3) (2018) 209-214. https://doi.org/10.1016/j.fshw.2018.06.002.

[37]

D. Lee, L. Albenberg, C. Compher, et al., Diet in the pathogenesis and treatment of inflammatory bowel diseases, Gastroenterology 148 (6) (2015) 1087-1106. https://doi.org/10.1053/j.gastro.2015.01.007.

[38]

O.M. Damas, L. Garces, M.T. Abreu, Diet as adjunctive treatment for inflammatory bowel disease: review and update of the latest literature, Curr. Treat. Options Gastro. 17 (2) (2019) 313-325. https://doi.org/10.1007/s11938-019-00231-8.

[39]

A.N. Ananthakrishnan, Environmental risk factors for inflammatory bowel diseases: a review, Dig. Dis. Sci. 60 (2) (2015) 290-298. https://doi.org/10.1007/s10620-014-3350-9.

[40]

B. Chassaing, O. Koren, J.K. Goodrich, et al., Dietary emulsifiers impact themouse gutmicrobiota promoting colitis and metabolic syndrome, Nature 519 (7541) (2015) 92. https://doi.org/10.1038/nature14232.

[41]

M. Chiba, Westernized diet is the most ubiquitous environmental factor in inflammatory bowel disease, Perm. J. 23 (2019) 18-107. https://doi.org/10.7812/TPP/18-107.

[42]

M. Schirmer, A. Garner, H. Vlamakis, et al., Microbial genes and pathways in inflammatory bowel disease, Nat. Rev. Microbiol. 17 (8) (2019) 497-511. https://doi.org/10.1038/s41579-019-0213-6.

[43]

R.B. Sartor, G.D. Wu, Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches, Gastroenterology 152 (2) (2017) 327-339. https://doi.org/10.1053/j.gastro.2016.10.012.

[44]

R. Sigall-Boneh, A. Levine, M. Lomer, et al., Research gaps in diet and nutrition in inflammatory bowel disease. A topical review by D-ECCO Working Group [Dietitians of ECCO], J. Crohns Colitis 11 (12) (2017) 1407-1419. https://doi.org/10.1093/ecco-jcc/jjx109.

[45]

N. Green, T. Miller, D. Suskind, et al., A review of dietary therapy for IBD and a vision for the future, Nutrients 11 (5) (2019) 947. https://doi.org/10.3390/nu11050947.

[46]

C. Wong, P. Harris, L. Ferguson, Potential benefits of dietary fibre intervention in inflammatory bowel disease, Int. J. Mol. Sci. 17 (6) (2016) 919. https://doi.org/10.3390/ijms17060919.

[47]

G. Tomasello, M. Mazzola, A. Leone, et al., Nutrition, oxidative stress and intestinal dysbiosis: influence of diet on gut microbiota in inflammatory bowel diseases, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 160 (4) (2016) 461-466. https://doi.org/10.5507/bp.2016.052.

[48]

Y.J. Weng, H.Y. Gan, X. Li, et al., Correlation of diet, microbiota and metabolite networks in inflammatory bowel disease, J. Digest. Dis. 20 (9) (2019) 447-459. https://doi.org/10.1111/1751-2980.12795.

[49]

J. Stavsky, R. Maitra, The synergistic role of diet and exercise in the prevention, pathogenesis, and management of ulcerative colitis: an underlying metabolic mechanism, Nutr. Metab. Insights 12 (2019) 1389446620. https://doi.org/10.1177/1178638819834526.

[50]

D.E. Serban, Microbiota in inflammatory bowel disease pathogenesis and therapy, Nutr. Clin. Pract. 30 (6) (2015) 760-779. https://doi.org/10.1177/0884533615606898.

[51]

M. Schirmer, A. Garner, H. Vlamakis, et al., Microbial genes and pathways in inflammatory bowel disease, Nat. Rev. Microbiol. 18 (8) (2019) 497-511. https://doi.org/10.1038/s41579-019-0213-6.

[52]

J. McIlroy, G. Ianiro, I. Mukhopadhya, et al., Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management, Aliment. Pharmacol. Ther. 47 (11) (2018) 26-42. https://doi.org/10.1111/apt.14384.

[53]

J. Lloyd-Price, G. Abu-Ali, C. Huttenhower, The healthy human microbiome, Genome Med. 8(51) (2016) https://doi.org/10.1186/s13073-016-0307-y.

[54]

I. Mukhopadhya, R. Hansen, E.M. El-Omar, et al., IBD-what role do proteobacteria play?, Nat. Rev. Gastroenterol. Hepatol. 9 (4) (2012) 219-230. https://doi.org/10.1038/nrgastro.2012.14.

[55]

M.P. Conte, S. Schippa, I. Zamboni, et al., Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease, Gut 55 (12) (2006) 1760-1767. https://doi.org/10.1136/gut.2005.078824.

[56]

M.L.J.G. Margarita, Escherichia coli in chronic inflammatory bowel diseases: an update on adherent invasive Escherichia coli pathogenicity, World J. Gastrointest. Pathophysiol. 5 (3) (2014) 213-227. https://doi.org/10.4291/wjgp.v5.i3.213.

[57]

P. Lepage, R. Häsler, M.E. Spehlmann, et al., Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis, Gastroenterology 141 (1) (2011) 227-236. https://doi.org/10.1053/j.gastro.2011.04.011.

[58]

K. Lucke, Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis, J. Med. Microbiol. 55 (5) (2006) 617-624. https://doi.org/10.1099/jmm.0.46198-0.

[59]

L. Chen, W. Wang, R. Zhou, et al., Characteristics of fecal and mucosa-associated microbiota in Chinese patients with inflammatory bowel disease, Medicine 93 (8) (2014) e51. https://doi.org/10.1097/MD.0000000000000051.

[60]

M. Sasaki, J.A. Klapproth, The role of bacteria in the pathogenesis of ulcerative colitis, J. Signal Transduct. (2012) (2012) 1-6. https://doi.org/10.1155/2012/704953.

[61]

J.M. Thomson, R. Hansen, S.H. Berry, et al., Enterohepatic Helicobacter in ulcerative colitis: potential pathogenic entities?, Plos One 6 (2) (2011) e17184. https://doi.org/10.1371/journal.pone.0017184.

[62]

M. Wang, G. Molin, S. Ahrné, et al., High proportions of proinflammatory bacteria on the colonic mucosa in a young patient with ulcerative colitis as revealed by cloning and sequencing of 16S rRNA genes, Dig. Dis. Sci. 52 (3) (2007) 620-627. https://doi.org/10.1007/s10620-006-9461-1.

[63]

M. Rajilić-Stojanović, F. Shanahan, F. Guarner, et al., Phylogenetic analysis of dysbiosis in ulcerative colitis during remission, Inflamm. Bowel Dis. 19 (3) (2013) 481-488. https://doi.org/10.1097/MIB.0b013e31827fec6d.

[64]

J. Vermeiren, P. Van den Abbeele, D. Laukens, et al., Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment, Fems Microbiol. Ecol. 79 (3) (2012) 685-696. https://doi.org/10.1111/j.1574-6941.2011.01252.x.

[65]

R. Shah, J.L. Cope, D. Nagy-Szakal, et al., Composition and function of the pediatric colonic mucosal microbiome in untreated patients with ulcerative colitis, Gut Microbes. 7 (5) (2016) 384-396. https://doi.org/10.1080/19490976.2016.1190073.

[66]

H. Sokol, P. Seksik, J.P. Furet, et al., Low counts of Faecalibacterium prausnitzii in colitis microbiota, Inflamm. Bowel Dis. 15 (8) (2009) 1183-1189. https://doi.org/10.1002/ibd.20903.

[67]

L.K. Vigsnæs, J. Brynskov, C. Steenholdt, et al., Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls, Benef. Microbes. 3 (4) (2012) 287-297. https://doi.org/10.3920/BM2012.0018.

[68]

L. Bajer, M. Kverka, M. Kostovcik, et al., Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis, World J. Gastroentero. 23 (25) (2017) 4548. https://doi.org/10.3748/wjg.v23.i25.4548.

[69]

J.S. Mar, B.J. LaMere, D.L. Lin, et al., Disease severity and immune activity relate to distinct interkingdom gut microbiome states in ethnically distinct ulcerative colitis patients, mBio. 7 (4) (2016) e1016-e1072. https://doi.org/10.1128/mBio.01072-16.

[70]

S. Sha, B. Xu, X. Wang, et al., The biodiversity and composition of the dominant fecal microbiota in patients with inflammatory bowel disease, Diagn. Micr. Infec. Dis. 75 (3) (2013) 245-251. https://doi.org/10.1016/j.diagmicrobio.2012.11.022.

[71]

T. Gosiewski, M. Strus, K. Fyderek, et al., Horizontal distribution of the fecal microbiota in adolescents with inflammatory bowel disease, J. Pediatr. Gastr. Nutr. 54 (1) (2012) 20-27. https://doi.org/10.1097/MPG.0b013e31822d53e5.

[72]

S.O. Noor, K. Ridgway, L. Scovell, et al., Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota, BMC Gastroenterol. 10 (1) (2010) 134. https://doi.org/10.1186/1471-230X-10-134.

[73]

A. Hirano, J. Umeno, Y. Okamoto, et al., Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis, J. Gastroen. Hepatol. 33 (9) (2018) 1590-1597. https://doi.org/10.1111/jgh.14129.

[74]

J.M. Larsen, The immune response to Prevotella bacteria in chronic inflammatory disease, Immunology 151 (4) (2017) 363-374. https://doi.org/10.1111/imm.12760.

[75]

T. Ohkusa, S. Koido, Intestinal microbiota and ulcerative colitis, J. Infect. Chemother. 21 (11) (2015) 761-768. https://doi.org/10.1016/j.jiac.2015.07.010.

[76]

C. Huttenhower, A.D. Kostic, R.J. Xavier, Inflammatory bowel disease as a model for translating the microbiome, Immunity 40 (6) (2014) 843-854. https://doi.org/10.1016/j.immuni.2014.05.013.

[77]

D. Boernigen, X.C. Morgan, E.A. Franzosa, et al., Functional profiling of the gut microbiome in disease-associated inflammation, Genome Med. 7 (7) (2013) 65. https://doi.org/10.1186/gm469.

[78]

J. Tan, C. McKenzie, M. Potamitis, et al., The role of short-chain fatty acids in health and disease, Adv. Immunol. 121 (2014) 91-119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9.

[79]

M. Sun, W. Wu, Z. Liu, et al., Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases, J. Gastroenterol. 52 (2017) 1-8. https://doi.org/10.1007/s00535-016-1242-9.

[80]

L. Etienne-Mesmin, B. Chassaing, A.T. Gewirtz, Tryptophan: a gut microbiota-derived metabolites regulating inflammation, World J. Gastrointest. Pharmacol. Ther. 8 (a) (2017) 7. https://doi.org/10.4292/wjgpt.v8.i1.7.

[81]

S. Sugimoto, M. Naganuma, T. Kanai, Indole compounds may be promising medicines for ulcerative colitis, J. Gastroenterol. 51 (9) (2016) 853-861. https://doi.org/10.1007/s00535-016-1220-2.

[82]

B. Pugin, W. Barcik, P. Westermann, et al., A wide diversity of bacteria from the human gut produces and degrades biogenic amines, Microb. Ecol. Health Dis. 28 (1) (2017) 1353881. https://doi.org/10.1080/16512235.2017.1353881.

[83]

S.B. Singh, H.C. Lin, Hydrogen sulfide in physiology and diseases of the digestive tract, Microorganisms 3 (4) (2015) 866-889. https://doi.org/10.3390/microorganisms3040866.

[84]

N. Ijssennagger, R. van der Meer, S. van Mil, Sulfide as a mucus barrier-breaker in inflammatory bowel disease?, Trends Mol. Med. 22 (3) (2016) 190-199. https://doi.org/10.1016/j.molmed.2016.01.002.

[85]

G.V. Sridharan, K. Choi, C. Klemashevich, et al., Prediction and quantification of bioactive microbiota metabolites in the mouse gut, Nat. Commun. 5 (2014) 5492. https://doi.org/10.1038/ncomms6492.

[86]

E.L. Vieira, A.J. Leonel, A.P. Sad, et al., Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis, J. Nutr. Biochem. 23 (5) (2012) 430-436. https://doi.org/10.1016/j.jnutbio.2011.01.007.

[87]

R.M. Abdul, J. Chilloux, L. Martinez-Gili, et al., Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles, Acta Diabetol. 56 (2019) 493-500. https://doi.org/10.1007/s00592-019-01312-x.

[88]

K.B. Martinez, V. Leone, E.B. Chang, Microbial metabolites in health and disease: navigating the unknown in search of function, J. Biol. Chem. 292 (21) (2017) 8553-8559. https://doi.org/10.1074/jbc.R116.752899.

[89]

N. Ijssennagger, C. Belzer, G.J. Hooiveld, et al., Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon, Proc. Natl. Acad. Sci. U S A 112 (32) (2015) 10038-10043. https://doi.org/10.1073/pnas.1507645112.

[90]

E. Fusi, L. Rossi, R. Rebucci, et al., Administration of biogenic amines to Saanen kids: effects on growth performance, meat quality and gut histology, Small Ruminant Res. 53 (1–2) (2004) 1-7. https://doi.org/10.1016/j.smallrumres.2003.07.009.

[91]

N. Diether, B. Willing, Microbial fermentation of dietary protein: an important factor in diet–microbe–host interaction, Microorganisms 7 (1) (2019) 19. https://doi.org/10.3390/microorganisms7010019.

[92]

R. Martin, F. Chain, S. Miquel, et al., Using murine colitis models to analyze probiotics-host interactions, FEMS Microbiol. Rev. 41 (Supp_1) (2017) S49-S70. https://doi.org/10.1093/femsre/fux035.

[93]

R. Chibbar, L.A. Dieleman, Probiotics in the management of ulcerative colitis, J. Clin. Gastroenterol. 49 (Suppl 1) (2015) S50-S55. https://doi.org/10.1097/MCG.0000000000000368.

[94]

Z.H. Shen, C.X. Zhu, Y.S. Quan, et al., Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation, World J. Gastroenterol. 24 (1) (2018) 5-14. https://doi.org/10.3748/wjg.v24.i1.5.

[95]

A.D. Kostic, R.J. Xavier, D. Gevers, The microbiome in inflammatory bowel disease: current status and the future ahead, Gastroenterology 146 (6) (2014) 1489-1499. https://doi.org/10.1053/j.gastro.2014.02.009.

[96]

K.M. Singh, P. Koli, Animal models for preclinical drug research on ulcerative colitis: a review, J. Sci. Soc. 45 (2018) 80.

[97]

B. Chassaing, J.D. Aitken, M. Malleshappa, et al., Dextran sulfate sodium (DSS)-induced colitis in mice, Current Protocols in Immunology 104(1) (2014)..

[98]

P. Alex, N.C. Zachos, T. Nguyen, et al., Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis, Inflamm. Bowel Dis. 15 (3) (2009) 341-352. https://doi.org/10.1002/ibd.20753.

[99]

J. Park, J. Choi, J.Y. Kwon, et al., A probiotic complex, rosavin, zinc, and prebiotics ameliorate intestinal inflammation in an acute colitis mouse model, J. Transl. Med. 16 (1) (2018) 37. https://doi.org/10.1186/s12967-018-1410-1.

[100]

X. Chen, Y. Fu, L. Wang, et al., Bifidobacterium longum and VSL#3® amelioration of TNBS-induced colitis associated with reduced HMGB1 and epithelial barrier impairment, Dev. Comp. Immunol. 92 (2019) 77-86. https://doi.org/10.1016/j.dci.2018.09.006.

[101]

S. Jang, J. Jeong, J. Kim, et al., Simultaneous amelioratation of colitis and liver injury in mice by Bifidobacterium longum LC67 and Lactobacillus plantarum LC27, Sci. Rep. 8 (1) (2018) 7500. https://doi.org/10.1038/s41598-018-25775-0.

[102]

G. Cao, K. Wang, Z. Li, et al., Bacillus amyloliquefaciens ameliorates dextran sulfate sodium-induced colitis by improving gut microbial dysbiosis in mice model, Front. Microbiol. 9 (2019). https://doi.org/10.3389/fmicb.2018.03260.

[103]

X. Ouyang, Z. Yang, R. Zhang, et al., Potentiation of Th17 cytokines in aging process contributes to the development of colitis, Cell. Immunol. 266 (2) (2011) 208-217. https://doi.org/10.1016/j.cellimm.2010.10.007.

[104]

H. Khalili, A.N. Ananthakrishnan, G.G. Konijeti, et al., Measures of obesity and risk of Crohn's disease and ulcerative colitis, Inflamm. Bowel Dis. 21 (2) (2015) 361-368. https://doi.org/10.1097/MIB.0000000000000283.

[105]

H.M. Jang, S.K. Han, J.K. Kim, et al., Lactobacillus sakei alleviates high-fat-diet-induced obesity and anxiety in mice by inducing AMPK activation and SIRT1 expression and inhibiting gut microbiota-mediated NF-κB activation, Mol. Nutr. Food Res. 63 (6) (2019) 1800978. https://doi.org/10.1002/mnfr.201800978.

[106]

H. In Kim, J. Kim, J. Kim, et al., Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice, Nutr. Res. 67 (2019) 78-89. https://doi.org/10.1016/j.nutres.2019.03.008.

[107]

S. Lim, D. Kim, Bifidobacterium adolescentis IM38 ameliorates high-fat diet-induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota, Nutr. Res. 41 (2017) 86-96. https://doi.org/10.1016/j.nutres.2017.04.003.

[108]

J. Jeong, J. Woo, Y. Ahn, et al., The probiotic mixture IRT5 ameliorates age-dependent colitis in rats, Int. Immunopharmacol. 26 (2) (2015) 416-422. https://doi.org/10.1016/j.intimp.2015.04.021.

[109]

J. Jeong, K. Kim, S. Jang, et al., Orally administrated Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent colitis by inhibiting the nuclear factor-Kappa B signaling pathway via the regulation of lipopolysaccharide production by gut microbiota, Plos One 10 (11) (2015) e116533. https://doi.org/10.1371/journal.pone.0116533.

[110]

R. White, T. Atherly, B. Guard, et al., Randomized, controlled trial evaluating the effect of multi-strain probiotic on the mucosal microbiota in canine idiopathic inflammatory bowel disease, Gut Microbes. 8 (5) (2017) 451-466. https://doi.org/10.1080/19490976.2017.1334754.

[111]

S. Vidal-Lletjós, M. Andriamihaja, A. Blais, et al., Dietary protein intake level modulates mucosal healing and mucosa-adherent microbiota in mouse model of colitis, Nutrients 11 (3) (2019) 514. https://doi.org/10.3390/nu11030514.

[112]

K. Kostovcikova, S. Coufal, N. Galanova, et al., Diet rich in animal protein promotes pro-inflammatory macrophage response and exacerbates colitis in mice, Front. Immunol. 10 (2019) 919. https://doi.org/10.3389/fimmu.2019.00919.

[113]

E. Kim, D. Kim, J. Park, Changes of mouse gut microbiota diversity and composition by modulating dietary protein and carbohydrate contents: a pilot study, Prev. Nutr. Food Sci. 21 (1) (2016) 57-61. https://doi.org/10.3746/pnf.2016.21.1.57.

[114]

R.K. Le Leu, G.P. Young, Y. Hu, et al., Dietary red meat aggravates dextran sulfate sodium-induced colitis in mice whereas resistant starch attenuates inflammation, Dig. Dis. Sci. 58 (2013) 3475-3482. https://doi.org/10.1007/s10620-013-2844-1.

[115]

R.C. Sprong, A.J. Schonewille, R. van der Meer, Dietary cheese whey protein protects rats against mild dextran sulfate sodium-induced colitis: role of mucin and microbiota, J. Dairy Sci. 93 (4) (2010) 1364-1371. https://doi.org/10.3168/jds.2009-2397.

[116]

K. Singh, A.P. Gobert, L.A. Coburn, et al., Dietary arginine regulates severity of experimental colitis and affects the colonic microbiome, Front. Cell. Infect. Mi. 9 (2019) 66. https://doi.org/10.3389/fcimb.2019.00066.

[117]

S. Chen, M. Wang, L. Yin, et al., Effects of dietary tryptophan supplementation in the acetic acid-induced colitis mouse model, Food Funct. 9 (8) (2018) 4143-4152. https://doi.org/10.1039/c8fo01025k.

[118]

B. Yang, K.Y. Hur, M. Lee, Alterations in gut microbiota and immunity by dietary fat, Yonsei Med. J. 58 (6) (2017) 1083. https://doi.org/10.3349/ymj.2017.58.6.1083.

[119]

S. Lim, J. Jeong, K.H. Woo, et al., Lactobacillus sakei OK67 ameliorates high-fat diet–induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression, Nutr. Res. 36 (4) (2016) 337-348. https://doi.org/10.1016/j.nutres.2015.12.001.

[120]

H. Matsunaga, R. Hokari, C. Kurihara, et al., Omega-3 fatty acids exacerbate DSS-induced colitis through decreased adiponectin in colonic subepithelial myofibroblasts, Inflamm. Bowel Dis. 14 (10) (2008) 1348-1357. https://doi.org/10.1002/ibd.20491.

[121]

J. Lee, H. Lee, T.K. Kim, et al., Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis, Plos One 12 (11) (2017) e187515. https://doi.org/10.1371/journal.pone.0187515.

[122]

M. Jeong, H. Jang, D. Kim, High-fat diet causes psychiatric disorders in mice by increasing Proteobacteria population, Neurosci. Lett. 698 (2019) 51-57. https://doi.org/10.1016/j.neulet.2019.01.006.

[123]

M. Zhang, X. Yang, Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases, World J. Gastroenterol. 22 (40) (2016) 8905. https://doi.org/10.3748/wjg.v22.i40.8905.

[124]

R. Xie, Y. Sun, J. Wu, et al., Maternal high fat diet alters gut microbiota of offspring and exacerbates DSS-induced colitis in adulthood, Front. Immunol. 9 (2018) 2608. https://doi.org/10.3389/fimmu.2018.02608.

[125]

D. DeCoffe, C. Quin, S.K. Gill, et al., Dietary lipid type, rather than total number of calories, alters outcomes of enteric infection in mice, J. Infect. Dis. 213 (11) (2016) 1846-1856. https://doi.org/10.1093/infdis/jiw084.

[126]

N. Abulizi, C. Quin, K. Brown, et al., Gut mucosal proteins and bacteriome are shaped by the saturation index of dietary lipids, Nutrients 11 (2) (2019) 418. https://doi.org/10.3390/nu11020418.

[127]

W.F. Stenson, The universe of arachidonic acid metabolites in inflammatory bowel disease, Curr. Opin. Gastroen. 30 (4) (2014) 347-351. https://doi.org/10.1097/MOG.0000000000000075.

[128]

J.H. Ooi, A. Waddell, Y. Lin, et al., Dominant effects of the diet on the microbiome and the local and systemic immune response in mice, Plos One 9 (1) (2014) e86366. https://doi.org/10.1371/journal.pone.0086366.

[129]

A. Hartog, F.N. Belle, J. Bastiaans, et al., A potential role for regulatory T-cells in the amelioration of DSS induced colitis by dietary non-digestible polysaccharides, J. Nutr. Biochem. 26 (3) (2015) 227-233. https://doi.org/10.1016/j.jnutbio.2014.10.011.

[130]

M. Laffin, R. Fedorak, A. Zalasky, et al., A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice, Sci. Rep. 9 (1) (2019) https://doi.org/10.1038/s41598-019-48749-2.

[131]

R. Liu, Y. Li, B. Zhang, The effects of konjac oligosaccharide on TNBS-induced colitis in rats, Int. Immunopharmacol. 40 (2016) 385-391. https://doi.org/10.1016/j.intimp.2016.08.040.

[132]

P. Koleva, A. Ketabi, R. Valcheva, et al., Chemically defined diet alters the protective properties of fructo-oligosaccharides and isomalto-oligosaccharides in HLA-B27 transgenic rats, Plos One 9 (11) (2014) e111717. https://doi.org/10.1371/journal.pone.0111717.

[133]

L. Macia, J. Tan, A.T. Vieira, et al., Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome, Nat. Commun. 6 (2015) 6734. https://doi.org/10.1038/ncomms7734.

[134]

M.S. Desai, A.M. Seekatz, N.M. Koropatkin, et al., A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility, Cell 167 (5) (2016) 1339-1353. https://doi.org/10.1016/j.cell.2016.10.043.

[135]

D.L. Suskind, G. Wahbeh, S.A. Cohen, et al., Patients perceive clinical benefit with the specific carbohydrate diet for inflammatory bowel disease, Dig. Dis. Sci. 61 (11) (2016) 3255-3260. https://doi.org/10.1007/s10620-016-4307-y.

[136]

S. Kakodkar, E.A. Mutlu, Diet as a therapeutic option for adult inflammatory bowel disease, Gastroenterol. Clin. North Am. 46 (4) (2017) 745-767. https://doi.org/10.1016/j.gtc.2017.08.016.

[137]

D.L. Suskind, S.A. Cohen, M.J. Brittnacher, et al., Clinical and fecal microbial changes with diet therapy in active inflammatory bowel disease, J. Clin. Gastroenterol. 52 (2) (2018) 155-163. https://doi.org/10.1097/MCG.0000000000000772.

[138]

S.R. Cox, A.C. Prince, C.E. Myers, et al., Fermentable carbohydrates [FODMAPs] exacerbate functional gastrointestinal symptoms in patients with inflammatory bowel disease: a randomised, double-blind, placebo-controlled, cross-over, re-challenge yrial, J. Crohns Colitis. 11 (12) (2017) 1420-1429. https://doi.org/10.1093/ecco-jcc/jjx073.

[139]

S.R. Cox, J.O. Lindsay, S. Fromentin, et al., Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial, Gastroenterology 158 (1) (2019) 176-188. https://doi.org/10.1053/j.gastro.2019.09.024.

[140]

R.R. Briefel, C.L. Johnson, Secular trends in dietary intake in the United States, Annu. Rev. Nutr. 24 (2004) 401-431. https://doi.org/10.1146/annurev.nutr.23.011702.073349.

[141]

Y. Wei, C. Lu, J. Chen, et al., High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice, Oncotarget. 8 (1) (2017) 70. https://doi.org/10.18632/oncotarget.13783.

[142]

P.M. Miranda, G. De Palma, V. Serkis, et al., High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production, Microbiome 6 (2018). https://doi.org/10.1186/s40168-018-0433-4.

[143]

K.F. Csáki, É. Sebestyén, Who will carry out the tests that would be necessary for proper safety evaluation of food emulsifiers? Food Sci. Hum. Wellness 8 (2) (2019) 126-135. https://doi.org/10.1016/j.fshw.2019.04.001.

[144]

W. Mu, Y. Wang, C. Huang, et al., Effect of long-term intake of dietary titanium dioxide nanoparticles on intestine inflammation in mice, J. Agr. Food Chem. 67 (33) (2019) 9382-9389. https://doi.org/10.1021/acs.jafc.9b02391.

[145]

L. Chen, Z. He, A.C. Iuga, et al., Diet modifies colonic microbiota and CD4+ T-cell repertoire to induce flares of colitis in mice with myeloid-cell expression of interleukin 23, Gastroenterology 155 (4) (2018) 1177. https://doi.org/10.1053/j.gastro.2018.06.034.

[146]

S.R. Llewellyn, G.J. Britton, E.J. Contijoch, et al., Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice, Gastroenterology 154 (4) (2018) 1037-1046. https://doi.org/10.1053/j.gastro.2017.11.030.

[147]

P. Rangan, I. Choi, M. Wei, et al., Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology, Cell Rep. 26 (10) (2019) 2704-2719. https://doi.org/10.1016/j.celrep.2019.02.019.

[148]

S. Tachon, B. Lee, M.L. Marco, Diet alters probiotic Lactobacillus persistence and function in the intestine, Environ. Microbiol. 16 (9) (2014) 2915-2926. https://doi.org/10.1111/1462-2920.12297.

[149]

S. Bibi, Y. Kang, M. Du, et al., Dietary red raspberries attenuate dextran sulfate sodium-induced acute colitis, J. Nutr. Biochem. 51 (2018) 40-46. https://doi.org/10.1016/j.jnutbio.2017.08.017.

[150]

H. Kim, K.A. Krenek, C. Fang, et al., Polyphenolic derivatives from mango (Mangifera Indica L.) modulate fecal microbiome, short-chain fatty acids production and the HDAC1/AMPK/LC3 axis in rats with DSS-induced colitis, J. Funct. Foods 48 (2018) 243-251. https://doi.org/10.1016/j.jff.2018.07.011.

[151]

M. Liso, S. De Santis, A. Scarano, et al., A bronze-tomato enriched diet affects the intestinal microbiome under homeostatic and inflammatory conditions, Nutrients 10 (12) (2018) 1862. https://doi.org/10.3390/nu10121862.

[152]

A. Scarano, E. Butelli, S. De Santis, et al., Combined dietary anthocyanins, flavonols, and stilbenoids alleviate inflammatory bowel disease symptoms in mice, Front. Nutr. 4 (2018) 75. https://doi.org/10.3389/fnut.2017.00075.

[153]

R. Pei, D.A. Martin, J.C. Valdez, et al., Dietary prevention of colitis by aronia berry is mediated through increased Th17 and Treg, Mol. Nutr. Food Res. 63 (5) (2018) e1800985. https://doi.org/10.1002/mnfr.201800985.

[154]

X. Cai, Y. Han, M. Gu, et al., Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice, Food Funct. 10 (2019) 6331-6341. https://doi.org/10.1039/C9FO01537J.

[155]

Y. Han, M. Song, M. Gu, et al., Dietary intake of whole strawberry inhibited colonic inflammation in dextran-sulfate-sodium-treated mice via restoring immune homeostasis and alleviating gut microbiota dysbiosis, J. Agr. Food Chem. 67 (33) (2019) 9168-9177. https://doi.org/10.1021/acs.jafc.8b05581.

[156]

Q. Hu, B. Yuan, X. Wu, et al., Dietary intake of Pleurotus eryngii ameliorated dextran-sodium-sulfate-induced colitis in mice, Mol. Nutr. Food Res. 63 (27) (2019) 1801265. https://doi.org/10.1002/mnfr.201801265.

[157]

C. Diling, Y. Xin, Z. Chaoqun, et al., Extracts from Hericium erinaceus relieve inflammatory bowel disease by regulating immunity and gut microbiota, Oncotarget 8 (49) (2017) 85838. https://doi.org/10.18632/oncotarget.20689.

[158]

T. Vezza, F. Algieri, J. Garrido-Mesa, et al., The immunomodulatory properties of propyl-propane thiosulfonate contribute to its intestinal anti-inflammatory effect in experimental colitis, Mol. Nutr. Food Res. 63 (5) (2019) 1800653. https://doi.org/10.1002/mnfr.201800653.

[159]

S.C. Ng, A.N. Ananthakrishnan, New approaches along the IBD course: diet, tight control and stem cells, Nat. Rev. Gastroenterol. Hepatol. 16 (2) (2019) 82-84. https://doi.org/10.1038/s41575-018-0088-4.

[160]

D. He, Y. Wang, J. Lin, et al., Identification and characterization of alcohol-soluble components from wheat germ-apple fermented by Lactobacillus sp. capable of preventing ulcerative colitis of dextran sodium sulfate-induced mice, J. Funct. Foods 64 (2020) 103642. https://doi.org/10.1016/j.jff.2019.103642.

[161]

J. Zhang, Q. Li, Y. Wei, et al., Process design of the antioxidant shuidouchi and its effect on preventing dextran sulfate sodium (DSS)-induced colitis in mice via antioxidant activity, Applied Sciences 9 (1) (2019) 5.

[162]

I. Khan, N. Ullah, L. Zha, et al., Alteration of gut microbiota in inflammatory bowel disease (IBD): cause or consequence? IBD treatment targeting the gut microbiome, Pathogens 8 (3) (2019) 126. https://doi.org/10.3390/pathogens8030126.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 January 2020
Revised: 24 March 2020
Accepted: 23 June 2020
Published: 22 March 2021
Issue date: March 2021

Copyright

© 2021 Beijing Academy of Food Sciences.

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Plan, China (2016YFD0400203-4).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return