Journal Home > Volume 10 , Issue 2

The use of bioactive compounds and probiotic bacteria against the viral diseases in human is known for a long time. Anti-viral, anti-inflammatory and anti-allergic properties of bioactive compounds and bacteria with probiotic properties in respiratory viral diseases may have significance to enhance immunity. This review highlights some of the important bioactive compounds and probiotic bacteria, suggesting them as a ray of hope in the milieu of the COVID-19 management.


menu
Abstract
Full text
Outline
About this article

Bioactive compounds and probiotics–a ray of hope in COVID-19 management

Show Author's information Indu BhushanaMahima Sharmaa,1Malvika Mehtaa,1Shivi BadyalaVarun SharmabIndu SharmabHemender SinghaSrinivas Sistlac( )
School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
Birbal Sahni Institute of Palaeosciences, Lucknow, UP, India
Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, USA

1 These authors contributed equally to this work.

Peer review under responsibility of KeAi Communications Co., Ltd

Abstract

The use of bioactive compounds and probiotic bacteria against the viral diseases in human is known for a long time. Anti-viral, anti-inflammatory and anti-allergic properties of bioactive compounds and bacteria with probiotic properties in respiratory viral diseases may have significance to enhance immunity. This review highlights some of the important bioactive compounds and probiotic bacteria, suggesting them as a ray of hope in the milieu of the COVID-19 management.

Keywords: Probiotics, Bioactive compounds, Metabolites, COVID, Food

References(113)

[1]

P.M. K ris-Etherton, K.D. Hecker, A. Bonanome, et al., Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113 (Suppl 9B) (2002) 71S-88S. https://doi.org/10.1016/S0002-9343(01)00995-0.

[2]

N. Siriwardhana, N.S. Kalupahana, M. Cekanova, et al., Modulation of adipose tissue inflammation by bioactive food compounds. J. Nutr. Biochem. 24 (4) (2013) 613-623. https://doi.org/10.1016/j.jnutbio.2012.12.013.

[3]

J.M. Carbonell-Capella, M. Buniowska, M.J. Esteve, et al., Effect of Stevia rebaudiana addition on bioaccessibility of bioactive compounds and antioxidant activity of beverages based on exotic fruits mixed with oat following simulated human digestion. Food Chem. 184 (2015) 122-130. https://doi.org/10.1016/j.foodchem.2015.03.095.

[4]

N.M. Hassimotto, M.I. Genovese, F.M. Lajolo, Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem. 53 (8) (2005) 2928-2935. https://doi.org/10.1021/jf047894h.

[5]

F. Yan, D.B. Polk, Probiotics and immune health. Curr. Opin. Gastroenterol. 27 (6) (2011) 496-501. https://doi.org/10.1097/MOG.0b013e32834baa4d.

[6]

J. Behnsen, E. Deriu, M. Sassone-Corsi, et al., Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med. 3 (3) (2013) a010074. https://doi.org/10.1101/cshperspect.a010074.

[7]

Z.Y. Zu, M.D. Jiang, P.P. Xu, et al., Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology. 296 (2) (2020) 200490. https://doi/10.1148/radiol.2020200490.

[8]

N. Chen, M. Zhou, X. Dong, et al., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395 (10223) (2020) 507-513. https://doi.org/10.1016/S0140-6736(20)30211-7.

[9]

P. Zhou, X.L. Yang, X.G. Wang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579 (7798) (2020) 270-273. https://doi.org/10.1038/s41586-020-2012-7.

[10]

A.P. Wu, Y.S. Peng, B.Y. Huang, et al., Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 27 (3) (2020) 325-328. https://doi.org/10.1016/j.chom.2020.02.001.

[11]

A.R. McCutcheon, T.E. Roberts, E. Gibbons, et al., Antiviral screening of British Columbian medicinal plants. J. Ethnopharmacol. 49 (2) (1995) 101-110. https://doi.org/10.1016/0378-8741(95)90037-3.

[12]

A.J. Vlietinck, D.A. Vanden Berghe, Can ethnopharmacology contribute to the development of antiviral drugs? J. Ethnopharmacol. 32 (1–3) (1991) 141-153. https://doi.org/10.1016/0378-8741(91)90112-q.

[13]

A.S. Setlur, S.Y. Naik, S. Skariyachan, Herbal lead as ideal bioactive compounds against probable drug targets of Ebola virus in comparison with known chemical analogue: a computational drug discovery perspective. Interdiscip Sci. 9 (2) (2017) 254-277. https://doi.org/10.1007/s12539-016-0149-8.

[14]
D.I. Santos, J.M.A. Saraiva, A.A. Vicente, et al., Methods for determiningbioavailability and bioaccessibility of bioactive compounds and nutrients. Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds. 2019, Elsevier. p. 23-54. https://doi.org/10.1016/B978-0-12-814174-8.00002-0.
[15]

A.E. Segneanu, S.M. Velciov, S. Olariu, et al., Bioactive molecules profile from natural compounds, in amino acid—new insights and roles in plant and animal. Intech Open. (2017) 209-228. https://dx.doi.org/10.5772/interchopen.68643.

[16]

A.C.M. Boon, A.P. Vos, Y.M.F. Garaus, et al., In vitro effect of bioactive compounds on influenza virus specific B-and T-cell responses. Scand. J. Immunol. 55 (1) (2002) 24-32. https://doi.org/10.1046/j.1365-3083.2002.01014.x.

[17]

J.S. Tregoning, J. Schwarze, Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin. Microbiol. Rev. 23 (1) (2010) 74-98. https://doi.org/10.1128/CMR.00032-09.

[18]

R.B. Couch, J.A. Englund, Respiratory viral infections in immunocompetent and immunocompromised persons. Am. J. Med. 102 (3) (1997) 2-9. https://doi.org/10.1016/S0002-9343(97)00003-X.

[19]

S.Y. Li, C. Chen, H.Q. Zhang, et al., Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 67 (1) (2005) 18-23. https://doi.org/10.1016/j.antiviral.2005.02.007.

[20]

C.C. Wen, Y.H. Kuo, J.T. Jan, et al., Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem. 50 (17) (2007) 4087-4095. https://doi.org/10.1021/jm070295s.

[21]

G. Hoever, L. Baltina, M. Michaelis, et al., Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem. 48 (4) (2005) 1256-1259. https://doi.org/10.1021/jm0493008.

[22]
H. Chon, Medicinal herbs and plant extracts for influenza: bioactivity, mechanism of anti-influenza effects, and modulation of immune responses, in Studies in Natural Products Chemistry. 2012, Elsevier. p. 305-323. https://doi.org/10.1016/B978-0-444-59530-0.00011-3.
[23]

C.M. Galanakis, The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods. 9 (4) (2020) 523. https://doi.org/10.3390/foods9040523.

[24]
Alipio, M., Vitamin D supplementation could possibly improve clinical outcomes of patients infected with Coronavirus-2019 (COVID-19). Available at SSRN 3571484, 2020. https://dx.doi.org/10.2139/ssrn.3571484.
[25]

W.B. Grant, H. Lahore, S.L. McDonnell, et al., Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 12 (4) (2020) 988. https://doi.org/10.3390/nu12040988.

[26]

T.E. Tallei, S.G. Tumilaar, N.J. Niode, et al., Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study. Prepr. (2020) 2020040102. https://doi.org/10.20944/preprints202004.0102.v3.

[27]

W. Li, M. Moore, N. Vasilieva, et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426 (6965) (2003) 450-454. https://doi.org/10.1038/nature02145.

[28]

K. Kuba, Y. Imai, S. Rao, et al., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11 (8) (2005) 875-879. https://doi.org/10.1038/nm1267.

[29]

M. Gheblawi, K. Wang, A. Viveiros, et al., Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ. Res. 126 (10) (2020) 1456-1474. https://doi.org/10.1161/CIRCRESAHA.120.317015.

[30]

W.L. Klaus, N. Yukiko, Food bioactives, micronutrients, immune function and COVID-19. J. Food Bioactive. 10 (2020). https://doi.org/10.31665/JFB.2020.10222.

[31]
A.K. Mishra, S.P. Tewari, In silico screening of some naturally occurring bioactive compounds predicts potential inhibitors against SARS-COV-2 (COVID-19) protease. arXiv preprint arXiv: 2004.01634, (2020).
[32]

S. Khaerunnisa, H. Kurniawan, R. Awaluddin, et al., Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Prepr. (2020) 1-14. https://doi.org/10.20944/preprints202003.0226.v1.

[33]

A. Balkrishna, S. Pokhrel, J. Singh, et al., Withanone from Withania somnifera may inhibit novel Coronavirus (COVID-19) entry by disrupting interactions between viral S-protein receptor binding domain and host ACE2 receptor. Research Square. (2020). https://doi.org/10.21203/rs.3.rs-17806/v1.

[34]

M.S. Yu, J. Lee, J.M. Lee, et al., Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett. 22 (12) (2012) 4049-4054. https://doi.org/10.1016/j.bmcl.2012.04.081.

[35]

J. Talukdar, S. Dasgupta, V. Nagle, et al., COVID-19: potential of microalgae derived natural astaxanthin as adjunctive supplement in alleviating cytokine storm. Prepr. (2020) 3579738. http://dx.doi.org/10.2139/ssrn.3579738.

[36]

A. Perez-Lopez, J. Behnsen, S.P. Nuccio, et al., Mucosal immunity to pathogenic intestinal bacteria. Nat. Rev. Immunol. 16 (3) (2016) 135-148. https://doi.org/10.1038/nri.2015.17.

[37]

Y. Goto, S. Uematsu, H. Kiyono, Epithelial glycosylation in gut homeostasis and inflammation. Nat. Immunol. 17 (11) (2016) 1244-1251. https://doi.org/10.1038/ni.3587.

[38]

D.R. Samuelson, D.A. Welsh, J.E. Shellito, Regulation of lung immunity and host defense by the intestinal microbiota. Front. Microbiol. 6 (2015) 1085. https://doi.org/10.3389/fmicb.2015.01085.

[39]

T. Ichinohe, I.K. Pang, Y. Kumamoto, et al., Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U. S. A. 108 (13) (2011) 5354-5359. https://doi.org/10.1073/pnas.1019378108.

[40]

S. Guandalini, Probiotics for prevention and treatment of diarrhea. J. Clin. Gastroenterol. 45 (Suppl) (2011) S149-S153. https://doi.org/10.1097/MCG.0b013e3182257e98.

[41]

M.K. Park, V. NGO, Y.M. Kwon, et al., Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity. PLoS One 8 (10) (2013) e75368. https://doi.org/10.1371/journal.pone.0075368.

[42]

L. Lehtoranta, A. Pitkäranta, R. Korpela, Probiotics in respiratory virus infections. Eur. J. Clin. Microbiol. Infect Dis. 33 (8) (2014) 1289-1302. https://doi.org/10.1007/s10096-014-2086-y.

[43]

C. Hill, F. Guarner, G. Reid, et al., Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11 (8) (2014) 506-514. https://doi.org/10.1038/nrgastro.2014.66.

[44]

V. Taverniti, S. Guglielmetti, The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 6 (3) (2011) 261-274. https://doi.org/10.1007/s12263-011-0218-x.

[45]

E. Isolauri, P. Kirjavainen, S. Salminen, Probiotics: a role in the treatment of intestinal infection and inflammation? Gut 50 (Suppl 3) (2002) III54-III59. https://doi.org/10.1136/gut.50.suppl_3.iii54.

[46]

M. Kumpu, R.A. Kekkonen, R. Korpela, et al., Effect of live and inactivated Lactobacillus rhamnosus GG on experimentally induced rhinovirus colds: randomised, double blind, placebo-controlled pilot trial. Benef. Microbes. 6 (5) (2015) 631-639. https://doi.org/10.3920/BM2014.0164.

[47]

K.N.C. Sindhu, T.V. Sowmyanarayanan, A. Paul, et al., Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 58 (8) (2014) 1107-1115. https://doi.org/10.1093/cid/ciu065.

[48]

M. Gleeson, N.C. Bishop, L. Struszczak, Effects of Lactobacillus casei Shirota ingestion on common cold infection and herpes virus antibodies in endurance athletes: a placebo-controlled, randomized trial. Eur. J. Appl. Physiol. 116 (8) (2016) 1555-1563. https://doi.org/10.1007/s00421-016-3415-x.

[49]

K. Van Puyenbroeck, N. Hens, S. Coenen, et al., Efficacy of daily intake of Lactobacillus casei Shirota on respiratory symptoms and influenza vaccination immune response: a randomized, double-blind, placebo-controlled trial in healthy elderly nursing home residents. Am. J. Clin. Nutr. 95 (5) (2012) 1165-1171. https://doi.org/10.3945/ajcn.111.026831.

[50]

L. Jespersen, I. Taronw, D. Eskesen, et al., Effect of Lactobacillus paracasei subsp. paracasei, L. casei 431 on immune response to influenza vaccination and upper respiratory tract infections in healthy adult volunteers: a randomized, double-blind, placebo-controlled, parallel-group study. Am. J. Clin. Nutr. 101 (6) (2015) 1188-1196. https://doi.org/10.3945/ajcn.114.103531.

[51]

G. Rizzardini, D. Eskesen, P.C. Calder, et al., Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12(R) and Lactobacillus paracasei ssp. paracasei, L. casei 431(R) in an influenza vaccination model: a randomised, double-blind, placebo-controlled study. Br. J. Nut. 107 (6) (2012) 876-884. https://doi.org/10.1017/S000711451100420X.

[52]

C.A. Pedone, C.C. Arnaud, E.R. Postaire, et al., Multicentric study of the effect of milk fermented by Lactobacillus casei on the incidence of diarrhoea. Int. J. Clin. Pract. 54 (9) (2000) 568-571.

[53]

T. Nagai, S. Makino, S. Ikegami, et al., Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. Int Immunopharmacol. 11 (12) (2011) 2246-2250. https://doi.org/10.1016/j.intimp.2011.09.012.

[54]

S. Makino, A. Sato, A. Goto, et al., Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J. Dairy Sci. 99 (2) (2016) 915-923. https://doi.org/10.3168/jds.2015-10376.

[55]

Y. Hirose, S. Murosaki, Y. Yamamoto, et al., Daily intake of heat-killed Lactobacillus plantarum L-137 augments acquired immunity in healthy adults. J. Nutr. 136 (12) (2006) 3069-3073. https://doi.org/10.1093/jn/136.12.3069.

[56]

Y. Arimori, R. Nakamura, Y. Hirose, et al., Daily intake of heat-killed Lactobacillus plantarum L-137 enhances type I interferon production in healthy humans and pigs. Immunopharmacol Immunotoxicol. 34 (6) (2012) 937-943. https://doi.org/10.3109/08923973.2012.672425.

[57]

Y. Hirose, Y. Yamamoto, Y. Yoshikai, et al., Oral intake of heat-killed Lactobacillus plantarum L-137 decreases the incidence of upper respiratory tract infection in healthy subjects with high levels of psychological stress. J. Nutr. Sci. 6;2 (2013) e39. https://doi.org/10.1017/jns.2013.35.

[58]

K.M. Oo, A.A. Lwin, Y.Y. Kyaw, et al., Safety and long-term effect of the probiotic FK-23 in patients with hepatitis C virus infection. Biosci. Microbiota. Food Health. 35 (3) (2016) 123-128. https://doi.org/10.12938/bmfh.2015-024.

[59]

G. Grandy, M. Medina, R. Soria, et al., Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infect Dis. 25 (2010) 253. https://doi.org/10.1186/1471-2334-10-253.

[60]

T. Sugimura, K. Jounai, K. Ohshio, et al., Immunomodulatory effect of Lactococcus lactis JCM5805 on human plasmacytoid dendritic cells. Clin. Immunol. 149 (3) (2013) 509-518. https://doi.org/10.1016/j.clim.2013.10.007.

[61]

T. Sugimura, H. Takahashi, K. Jounai, et al., Effects of oral intake of plasmacytoid dendritic cells-stimulative lactic acid bacterial strain on pathogenesis of influenza-like illness and immunological response to influenza virus. Br. J. Nutr. 114 (5) (2015) 727-733. https://doi.org/10.1017/S0007114515002408.

[62]

T. Kawahara, T. Takahashi, K. Oishi, et al., Consecutive oral administration of Bifidobacterium longum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiol Immunol. 59 (1) (2015) 1-12. https://doi.org/10.1111/1348-0421.12210.

[63]

N. Iwabuchi, J.Z. Xiao, T. Yaeshima, et al., Oral administration of Bifidobacterium longum ameliorates influenza virus infection in mice. Biol. Pharm. Bull. 34 (8) (2011) 1352-1355. https://doi.org/10.1248/bpb.34.1352.

[64]

G. Rizzardini, D. Eskesen, P.C. Calder, et al., Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12® and Lactobacillus paracasei ssp. paracasei, L. casei 431® in an influenza vaccination model: a randomised, double-blind, placebo-controlled study. Br. J. Nutr. 107 (6) (2012) 876-884. https://doi.org/10.1017/S000711451100420X.

[65]

J.Y. Kang, D.Y. Lee, N.J. Ha, et al., Antiviral effects of Lactobacillus ruminis SPM0211 and Bifidobacterium longum SPM1205 and SPM1206 on rotavirus-infected Caco-2 cells and a neonatal mouse model. J. Microbiol. 53 (11) (2015) 796-803. https://doi.org/10.1007/s12275-015-5302-2.

[66]

M. de Vrese, P. Winkler, P. Rautenberg, et al., Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: a double blind, randomized, controlled trial. Clin. Nutr. 24 (4) (2005) 481-491. https://doi.org/10.1016/j.clnu.2005.02.006.

[67]

J.M. Saavedra, N.A. Bauman, I. Oung, et al., Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet. 344 (8929) (1994) 1046-1049. https://doi.org/10.1016/s0140-6736(94)91708-6.

[68]

G. Gonzalez-Ochoa, L.K. Flores-Mendoza, R. Icedo-Garcia, et al., Modulation of rotavirus severe gastroenteritis by the combination of probiotics and prebiotics. Arch. Microbiol. 199 (7) (2017) 953-961. https://doi.org/10.1007/s00203-017-1400-3.

[69]

R. Enaud, R. Prevel, E. Ciarlo, et al., The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front. Cell Infect Microbiol. 10 (2020) 9. https://doi.org/10.3389/fcimb.2020.00009.

[70]

V. Kumar, K. Baruah, D.V. Nguyen, et al., Phloroglucinol-mediated Hsp70 production in crustaceans: protection against Vibrio parahaemolyticus in Artemia franciscana and Macrobrachium rosenbergii. Front. Immunol. 9 (2018) 1091. https://doi.org/10.3389/fimmu.2018.01091.

[71]

V. Sencio, A. Barthelemy, L.P. Tavares, et al., Gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection through altered short-chain fatty acid production. Cell Rep. 30 (9) (2020) 2934-2947. https://doi.org/10.1016/j.celrep.2020.02.013.

[72]

Q.Y. Gao, Y.X. Chen, J.Y. Fang, 2019 novel coronavirus infection and gastrointestinal tract. J. Dig. Dis. 21 (3) (2020) 125-126. https://doi.org/10.1111/1751-2980.12851.

[73]

K. Xu, H.L. Cai, Y.H. Shen, et al., Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Journal of Zhejiang University (medical science) 49 (1) (2020) 147-157.

[74]

F. Di Pierro, A possible probiotic (S. salivarius K12) approach to improve oral and lung microbiotas and raise defenses against SARS-CoV-2. Minerva. Med. 111 (3) (2020) 281-283. https://doi.org/10.23736/s0026-4806.20.06570-2.

[75]

H. Getahun, C. Gunneberg, R. Granich, et al., HIV infection—associated tuberculosis: the epidemiology and the response. Clin. Infect Dis. 50 (Supplement_3) (2010) S201-S207. https://doi.org/10.1086/651492.

[76]

W.D. Chai, M. Burwinkel, Z.Y. Wang, et al., Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus. Arch. Virol. 158 (4) (2013) 799-807. https://doi.org/10.1007/s00705-012-1543-0.

[77]

Y.S. Liu, Q. Liu, Y.L. Jiang, et al., Surface-displayed porcine IFN-λ3 in Lactobacillus plantarum inhibits porcine enteric coronavirus infection of porcine intestinal epithelial cells. J. Microbiol. Biotechnol. 30 (4) (2020) 515-525. https://doi.org/10.4014/jmb.1909.09041.

[78]

R.V.J. Kumar, B.J. Seo, M.R. Mun, et al., Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Trop Anim. Health Prod. 42 (8) (2010) 1855-1860. https://doi.org/10.1007/s11250-010-9648-5.

[79]

K. Wang, L. Ran, T. Yan, et al., Anti-TGEV miller strain infection effect of Lactobacillus plantarum supernatant based on the JAK-STAT1 signaling pathway. Front Microbiol. 10 (2019) 2540. https://doi.org/10.3389/fmicb.2019.02540.

[80]

A. Shoaib, L. Xin, Y. Xin, Oral administration of Lactobacillus acidophilus alleviates exacerbations in Pseudomonas aeruginosa and Staphylococcus aureus pulmonary infections. Pak. J. Pharm. Sci. 32 (2019) 1621-1630.

[81]

A. Ceribelli, F. Motta, M. De Santis, et al., Recommendations for coronavirus infection in rheumatic diseases treated with biologic therapy. J. Autoimmun. 109 (2020) 102442. https://doi.org/10.1016/j.jaut.2020.102442.

[82]

M. Mahooti, E. Abdolalipour, A. Salehzadeh, et al., Immunomodulatory and prophylactic effects of Bifidobacterium bifidum probiotic strain on influenza infection in mice. World J. Microbiol. Biotechnol. 35 (6) (2019) 91. https://doi.org/10.1007/s11274-019-2667-0.

[83]

K. Eguchi, N. Fujitani, H. Nakagawa, et al., Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci. Rep. 9 (1) (2019) 1-11. https://doi.org/10.1038/s41598-019-39602-7.

[84]

F.F. Pu, Y. Guo, M. Lin, et al., Yogurt supplemented with probiotics can protect the healthy elderly from respiratory infections: a randomized controlled open-label trial. Clin. Interv. Aging. 12 (2017) 1223-1231. https://doi.org/10.2147/cia.s141518.

[85]

F. D'Amico, D.C. Baumgart, S. Danses, et al., Diarrhea during COVID-19 infection: pathogenesis, epidemiology, prevention and management. Clin. Gastroenterol. Hepatol. 18 (8) (2020) 1663-1672. https://doi.org/10.1016/j.cgh.2020.04.001.

[86]

A.T. Xiao, Y.X. Tong, C. Gao, et al., Dynamic profile of RT-PCR findings from 301 COVID-19 patients in Wuhan, China: a descriptive study. J. Clin. Virol. 127 (2020) 104346. https://doi.org/10.1016/j.jcv.2020.104346.

[87]

S. Raghuwanshi, S. Misra, P. Bisen, Indian perspective for probiotics: a review. Indian J. Dairy Sci. 68 (3) (2015) 195-205.

[88]

D. Dhar, A. Mohanty, Gut microbiota and Covid-19-possible link and implications. Virus Res. (2020) 198018. https://doi.org/10.1016/j.virusres.2020.198018.

[89]

R. Jayawardena, P. Sooriyaarachchi, M. Chourdakis, et al., Enhancing immunity in viral infections, with special emphasis on COVID-19: a review. Diabetes Metab. Syndr. 14 (4) (2020) 367-382. https://doi.org/10.1016/j.dsx.2020.04.015.

[90]

J.W. Mak, F.K. Chan, S.C. Ng, Probiotics and COVID-19: one size does not fit all, Lancet Gastroenterol. Hepatol. 5 (7) (2020) 644-645. https://doi.org/10.1016/s2468-1253(20)30122-9.

[91]

M. Franz, H. Rodriguez, C. Lopes, et al., GeneMANIA update 2018. Nucleic Acids Res. 46 (W1) (2018) W60-W64. https://doi.org/10.1093/nar/gky311.

[92]

M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181(2) (2020) 271-280 e8. https://doi.org/10.1016/j.cell.2020.02.052.

[93]

A.C. Walls, Y.J. Park, M.A. Tortorici, et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 181 (2) (2020) 281-292 e6. https://doi.org/10.1016/j.cell.2020.02.058.

[94]

J.W. Arnold, J.B. Simpson, J. Roach, et al., Prebiotics for lactose intolerance: variability in galacto-oligosaccharide utilization by intestinal Lactobacillus rhamnosus. Nutrients. 10 (10) (2018) 1517. https://doi.org/10.3390/nu10101517.

[95]

I. Jarvela, S. Torniainen, K.L. Kolho, Molecular genetics of human lactase deficiencies. Ann. Med. 41 (8) (2009) 568-575. https://doi.org/10.1080/07853890903121033.

[96]

X. Zou, K. Chen, J.W. Zou, et al., Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 14 (2) (2020) 185-192. https://doi.org/10.1007/s11684-020-0754-0.

[97]

H. Xu, L. Zhong, J.X. Deng, et al., High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 12 (1) (2020) 8. https://doi.org/10.1038/s41368-020-0074-x.

[98]

H. Zhang, Z.J. Kang, H.Y. Gong, et al., Digestive system is a potential route of COVID-19: an analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut. 69 (6) (2020) 1010-1018. http://dx.doi.org/10.1136/gutjnl-2020-320953.

[99]

Y. He, Y. Tang, M. Peng, et al., Influence of Debaryomyces hansenii on bacterial lactase gene diversity in intestinal mucosa of mice with antibiotic-associated diarrhea. PLoS One. 14 (12) (2019) e0225802. https://doi.org/10.1371/journal.pone.0225802.

[100]

P. Gutierrez-Castrellon, G. Lopez-Velazquez, L. Diaz-Garcia, et al., Diarrhea in preschool children and Lactobacillus reuteri: a randomized controlled trial. Pediatrics. 133 (4) (2014) e904-e909. https://doi.org/10.1542/peds.2013-0652.

[101]

P. Tubelius, V. Stan, A. Zachrisson, Increasing work-place healthiness with the probiotic Lactobacillus reuteri: a randomised, double-blind placebo-controlled study. Environ. Health. 4 (2005) 25. https://doi.org/10.1186/1476-069x-4-25.

[102]

P. Pimentel-Nunes, J.B. Soares, R. Roncon-Albuquerque, et al., Toll-like receptors as therapeutic targets in gastrointestinal diseases. Expert Opin. Ther. Targets. 14 (4) (2010) 347-368. https://doi.org/10.1517/14728221003642027.

[103]

S. Liu, P.W. Hu, X.X. Du, et al., Lactobacillus rhamnosus GG supplementation for preventing respiratory infections in children: a meta-analysis of randomized, placebo-controlled trials. Indian Pediatr. 50 (4) (2013) 377-381. https://doi.org/10.1007/s13312-013-0123-z.

[104]

Y. Yamamoto, K. Fujino, J. Saruta, et al., Effects of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 on the IgA flow rate of saliva in elderly persons residing in a nursing home: a before-after non-randomised intervention study. Gerodontol. 34 (4) (2017) 479-485. https://doi.org/10.1111/ger.12296.

[105]

I.L. Ahren, A. Berggren, C. Teixeira, et al., Evaluation of the efficacy of Lactobacillus plantarum HEAL9 and Lactobacillus paracasei 8700:2 on aspects of common cold infections in children attending day care: a randomised, double-blind, placebo-controlled clinical study. Eur. J. Nutr. 59 (1) (2020) 409-417. https://doi.org/10.1007/s00394-019-02137-8.

[106]

S. Arai, N. Iwabuchi, S. Takahashi, et al., Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific IgA secretion and induces follicular helper T cells in mice. PLoS One. 13 (6) (2018) e0199018. https://doi.org/10.1371/journal.pone.0199018.

[107]

E. Guillemard, F. Tondu, F. Lacoin, et al., Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br. J. Nutr. 103 (1) (2010) 58-68. https://doi.org/10.1017/s0007114509991395.

[108]

Y. Hirose, Y. Yamanoto, Y. Yoshikai, et al., Oral intake of heat-killed Lactobacillus plantarum L-137 decreases the incidence of upper respiratory tract infection in healthy subjects with high levels of psychological stress. J. Nutr. Sci. 2 (2013) e39. https://doi.org/10.1017/jns.2013.35.

[109]

K. Fukada, D. Fujikura, Y. Nakayama, et al., Enterococcus faecalis FK-23 affects alveolar-capillary permeability to attenuate leukocyte influx in lung after influenza virus infection. Springerplus. 2 (1) (2013) 269. https://doi.org/10.1186/2193-1801-2-269.

[110]

M. Karen, O. Yuksel, N. Akyürek, et al., Probiotic agent Saccharomyces boulardii reduces the incidence of lung injury in acute necrotizing pancreatitis induced rats. J. Surg. Res. 160 (1) (2010) 139-144. https://doi.org/10.1016/j.jss.2009.02.008.

[111]

H. Meng, Y. Lee, Z. Ba, et al., Consumption of Bifidobacterium animalis subsp. lactis BB-12 impacts upper respiratory tract infection and the function of NK and T cells in healthy adults. Mol. Nutr. Food Res. 60 (5) (2016) 1161-1171. https://doi.org/10.1002/mnfr.201500665.

[112]

M. Jungersen, A. Wind, E. Johansen, et al., The science behind the probiotic strain Bifidobacterium animalis subsp. lactis BB-12(®). Microorganisms. 2 (2) (2014) 92-110. https://doi.org/10.3390/microorganisms2020092.

[113]

K. Jounai, T. Sugimura, K. Ohshio, et al., Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection. PLoS One. 10 (3) (2015) e0119055. https://doi.org/10.1371/journal.pone.0119055.

Publication history
Copyright
Rights and permissions

Publication history

Received: 15 January 2020
Revised: 10 August 2020
Accepted: 10 August 2020
Published: 22 March 2021
Issue date: March 2021

Copyright

© 2021 Beijing Academy of Food Sciences.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return