Journal Home > Volume 8 , Issue 3

There is a growing interest that bioactive compounds from seaweed can play a major therapeutic role in disease prevention in humans. Seaweed bioactives including polysaccharides, pigments, fatty acids, polyphenols and peptides have been proven to possess various beneficial biological properties that could potentially contribute to functional food and nutraceutical development. These bioactive are explored for functional properties such as antioxidant, antibacterial, anticancer, antidiabetic, antitumor, antiviral, anti-inflammatory and anticoagulant properties, both in an in-vitro and in-vivo model system. This review critically examines the existing scientific knowledge on primary and secondary metabolites from seaweed and their functional properties for health-related conditions. It presents an update on the most recent evidence relating to their effect on health-related conditions and their action on cellular metabolism. Recent advancement and challenges for seaweed bioactive as a nutraceutical in relation to their biocompatibility and bioavailability to understand their therapeutic development is discussed.


menu
Abstract
Full text
Outline
About this article

Seaweed nutraceuticals and their therapeutic role in disease prevention

Show Author's information Abirami R. GanesanaUma TiwaribGaurav Rajauriac( )
School of Applied Sciences, College of Engineering, Science and Technology, Fiji National University, Fiji
School of Science, Institute of Technology Sligo, Ballinode, Co. Sligo, Ireland
School of Agriculture and Food Science, University College Dublin, Lyons Research Farm, Celbridge, Co. Kildare, Ireland

Abstract

There is a growing interest that bioactive compounds from seaweed can play a major therapeutic role in disease prevention in humans. Seaweed bioactives including polysaccharides, pigments, fatty acids, polyphenols and peptides have been proven to possess various beneficial biological properties that could potentially contribute to functional food and nutraceutical development. These bioactive are explored for functional properties such as antioxidant, antibacterial, anticancer, antidiabetic, antitumor, antiviral, anti-inflammatory and anticoagulant properties, both in an in-vitro and in-vivo model system. This review critically examines the existing scientific knowledge on primary and secondary metabolites from seaweed and their functional properties for health-related conditions. It presents an update on the most recent evidence relating to their effect on health-related conditions and their action on cellular metabolism. Recent advancement and challenges for seaweed bioactive as a nutraceutical in relation to their biocompatibility and bioavailability to understand their therapeutic development is discussed.

Keywords: Glucose metabolism, Lipid metabolism, Bioavailability, Functional ingredients, Macroalgae

References(90)

[1]

A. Bocanegra, S. Bastida, J. Benedi, S. Rodenas, F.J. Sanchez-Muniz, Characteristics and nutritional and cardiovascular-health properties of seaweeds, J. Med. Food 12 (2) (2009) 236-258.

[2]
G. Rajauria, L. Cornish, F. Ometto, F.E. Msuya, R. Villa, Identification and selection of algae for food, feed, and fuel applications, Academic Press, UK (2015) 315-345.
DOI
[3]

Y. Miyake, K. Tanaka, H. Okubo, S. Sasaki, M. Arakawa, Seaweed consumption and prevalence of depressive symptoms during pregnancy in Japan: baseline data from the Kyushu Okinawa Maternal and Child Health Study, BMC Pregnancy Childbirth 14 (1) (2014) 301-307.

[4]

A. Nanri, T. Mizoue, K. Poudel-Tandukar, M. Noda, M. Kato, K. Kurotani, A. Goto, S. Oba, M. Inoue, S. Tsugane, Dietary patterns and suicide in Japanese adults: the Japan public health center-based prospective study, Br. J. Psychiatry 203 (6) (2013) 422-427.

[5]

H.J. Lee, H.C. Kim, L. Vitek, C.M. Nam, Algae consumption and risk of type 2 diabetes: korean National Health and Nutrition Examination Survey in 2005, J. Nutr. Sci. Vitaminol. 56 (1) (2010) 13-18.

[6]

L. Rosenfeld, Discovery and early uses of iodine, J. Chem. Educ. 77 (8) (2000) 984.

[7]

G. Rajauria, B. Foley, N. Abu-Ghannam, Identification and characterization of phenolic antioxidant compounds from brown Irish seaweed Himanthalia elongata using LC-DAD–ESI-MS/MS, Innov. Food Sci. Emerg. Technol. 37 (Part B) (2016) 261-268.

[8]

J. Teas, S. Vena, D.L. Cone, M. Irhimeh, The consumption of seaweed as a protective factor in the etiology of breast cancer: proof of principle, J. Appl. Phycol. 25 (3) (2013) 771-779.

[9]

S.P. Myers, A.M. Mulder, D.G. Baker, S.R. Robinson, M.I. Rolfe, L. Brooks, J.H. Fitton, Effects of fucoidan from Fucus vesiculosus in reducing symptoms of osteoarthritis: a randomized placebo‐controlled trial, Biol. Targets Ther. 10 (2016) 81-88.

[10]

P.R.S. Stephens, C.C. Cirne-Santos, C. de Souza Barros, V.L. Teixeira, L.A.D. Carneiro, Ld. S.C. Amorim, J.S.P. Ocampo, L.R.R. Castello-Branco, I.C.N. de Palmer Paixão, Diterpene from marine brown alga Dictyota friabilis as a potential microbicide against HIV-1 in tissue explants, J. Appl. Phycol. 29 (2) (2017) 775-780.

[11]

S. Nagarajan, M. Mathaiyan, Emerging novel anti HIV biomolecules from marine Algae: an overview, J. Appl. Pharm. Sci. 5 (2015) 153-158.

[12]

R.M. Lowenthal, J.H. Fitton, Are seaweed-derived fucoidans possible future anti-cancer agents?, J. Appl. Phycol. 27 (5) (2015) 2075-2077.

[13]

K.W. Lange, J. Hauser, Y. Nakamura, S. Kanaya, Dietary seaweeds and obesity, Food Sci. Hum. Wellness 4 (3) (2015) 87-96.

[14]

Y. Wang, G. Chen, Y. Peng, Y. Rui, X. Zeng, H. Ye, Simulated digestion and fermentation in vitro with human gut microbiota of polysaccharides from Coralline pilulifera, LWT-Food Sci. Technol. 100 (2019) 167-174.

[15]

N. Nunraksa, S. Rattanasansri, J. Praiboon, A. Chirapart, Proximate composition and the production of fermentable sugars, levulinic acid, and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in earthen ponds, J. Appl. Phycol. 31 (1) (2019) 683-690.

[16]

M. Garcia-Vaquero, G. Rajauria, J. O'Doherty, T. Sweeney, Polysaccharides from macroalgae: recent advances, innovative technologies and challenges in extraction and purification, Food Res. Int. 99 (2017) 1011-1020.

[17]

A.R. Ganesan, M. Shanmugam, R. Bhat, Producing novel edible films from semi refined carrageenan (SRC) and ulvan polysaccharides for potential food applications, Int. J. Biol. Macromol. 112 (2018) 1164-1170.

[18]

P. Seedevi, M. Moovendhan, S. Viramani, A. Shanmugam, Bioactive potential and structural chracterization of sulfated polysaccharide from seaweed (Gracilaria corticata), Carbohydr. Polym. 155 (2017) 516-524.

[19]

T.A. Olasehinde, L.V. Mabinya, A.A. Olaniran, A.I. Okoh, Chemical characterization, antioxidant properties, cholinesterase inhibitory and anti-amyloidogenic activities of sulfated polysaccharides from some seaweeds, Bioact. Carbohydr. Diet. Fibre 100182 (2019).

[20]

R.G. Abirami, S. Kowsalya, Phytochemical screening, microbial load and antimicrobial activity of underexploited seaweeds, Int. Res. J. Microbiol. 3 (10) (2012) 328-332.

[21]

V. Dhargalkar, Uses of seaweeds in the Indian diet for sustenance and well-being, Sci. Cult. 80 (2015) 192-202.

[22]

M.G. Urbano, I. Goñi, Bioavailability of nutrients in rats fed on edible seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a source of dietary fibre, Food Chem. 76 (3) (2002) 281-286.

[23]

I. Viera, A. Pérez-Gálvez, M. Roca, Bioaccessibility of marine carotenoids, Mar. Drugs 16 (10) (2018) 397.

[24]

M. Murata, J. Nakazoe, Production and use of marine AIgae in Japan, Jpn. Agric. Res. Q. JARQ 35 (4) (2001) 281-290.

[25]

T.P.C. Fontenelle, G.C. Lima, J.X. Mesquita, J.L. de Souza Lopes, T.V. de Brito, Fd. C.V. Júnior, A.B. Sales, K.S. Aragão, M.H.L.P. Souza, A.L. dos Reis Barbosa, Lectin obtained from the red seaweed Bryothamnion triquetrum: secondary structure and anti-inflammatory activity in mice, Int. J. Biol. Macromol. 112 (2018) 1122-1130.

[26]

J.I. McCauley, P.C. Winberg, B.J. Meyer, D. Skropeta, Effects of nutrients and processing on the nutritionally important metabolites of Ulva sp. (Chlorophyta), Algal Res. 35 (2018) 586-594.

[27]

G. Hernández-Carmona, S. Carrillo-Domínguez, D.L. Arvizu-Higuera, Y.E. Rodríguez-Montesinos, J.I. Murillo-Álvarez, M. Muñoz-Ochoa, R.M. Castillo-Domínguez, Monthly variation in the chemical composition of Eisenia arborea J.E. Areschoug, J. Appl. Phycol. 21 (5) (2009) 607-616.

[28]

N. Castillejo, G.B. Martínez‐Hernández, V. Goffi, P.A. Gómez, E. Aguayo, F. Artés, F. Artés-Hernández, Natural vitamin B12 and fucose supplementation of green smoothies with edible algae and related quality changes during their shelf life, J. Sci. Food Agric. 98 (6) (2018) 2411-2421.

[29]

S. Takenaka, S. Sugiyama, S. Ebara, E. Miyamoto, K. Abe, Y. Tamura, F. Watanabe, S. Tsuyama, Y. Nakano, Feeding dried purple laver (nori) to vitamin B12-deficient rats significantly improves vitamin B12 status, Br. J. Nutr. 85 (6) (2007) 699-703.

[30]

R. Othman, N. Amin, M. Sani, N. Fadzillah, Carotenoid and chlorophyll profiles in five species of malaysian seaweed as potential halal active pharmaceutical ingredient (API), Int. J. Adv. Sci. Eng. Inf. Technol. 8 (4–2) (2018) 1610-1616.

[31]

P. Ganesan, K. Noda, Y. Manabe, T. Ohkubo, Y. Tanaka, T. Maoka, T. Sugawara, T. Hirata, Siphonaxanthin, a marine carotenoid from green algae, effectively induces apoptosis in human leukemia (HL-60) cells, Biochim. Biophys. Acta (BBA) – Gen. Subj. 1810 (5) (2011) 497-503.

[32]

R.G. Abirami, S. Kowsalya, Quantification and correlation study on derived phenols and antioxidant activity of seaweeds from Gulf of Mannar, J. Herbs Spices Med. Plants 23 (1) (2017) 9-17.

[33]

G. Rajauria, A.K. Jaiswal, N. Abu-Gannam, S. Gupta, Antimicrobial, antioxidant and free radical-scavenging capacity of brown seaweed Himanthalia elongata from western coast of Ireland, J. Food Biochem. 37 (3) (2013) 322-335.

[34]

Y. Li, Z. -J. Qian, B. Ryu, S. -H. Lee, M. -M. Kim, S. -K. Kim, Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava, Bioorg. Med. Chem. 17 (5) (2009) 1963-1973.

[35]

K. Chen, M. Roca, In vitro bioavailability of chlorophyll pigments from edible seaweeds, J. Funct. Foods 41 (2018) 25-33.

[36]

N. Kongchouy, J.R. Dean, Bioaccessibility of heavy metals in the seaweed Caulerpa racemosa var. corynephora: Human health risk from consumption AU - Intawongse, Marisa, Instrum. Sci. Technol. 46 (6) (2018) 628-644.

[37]

R. Domínguez-González, V. Romarís-Hortas, C. García-Sartal, A. Moreda-Piñeiro, M. del Carmen Barciela-Alonso, P. Bermejo-Barrera, Evaluation of an in vitro method to estimate trace elements bioavailability in edible seaweeds, Talanta 82 (5) (2010) 1668-1673.

[38]

C. García-Sartal, Md. C. Barciela-Alonso, A. Moreda-Piñeiro, P. Bermejo-Barrera, Study of cooking on the bioavailability of As, Co, Cr, Cu, Fe, Ni, Se and Zn from edible seaweed, Microchem. J. 108 (2013) 92-99.

[39]

P. Stévant, H. Marfaing, A. Duinker, J. Fleurence, T. Rustad, I. Sandbakken, A. Chapman, Biomass soaking treatments to reduce potentially undesirable compounds in the edible seaweeds sugar kelp (Saccharina latissima) and winged kelp (Alaria esculenta) and health risk estimation for human consumption, J. Appl. Phycol. 30 (3) (2018) 2047-2060.

[40]

A.T. Banu, S.U. Mageswari, Nutritional status and effect of seaweed chocolate on anemic adolescent girls, Food Sci. Hum. Wellness 4 (1) (2015) 28-34.

[41]
R.G. Abirami, S. Kowsalya, Nutritional and Safety Evaluation of Underexploited Seaweeds and Nutraceutical Potentials of Ulva fasciata, Avinashilingam University for Women, Coimbatore, India (2012).
[42]

L.M. Arterburn, H.A. Oken, J.P. Hoffman, E. Bailey-Hall, G. Chung, D. Rom, J. Hamersley, D. McCarthy, Bioequivalence of docosahexaenoic acid from different algal oils in capsules and in a DHA-fortified food, Lipids 42 (11) (2007) 1011.

[43]

R.G. Abirami, S. Kowsalya, Antidiabetic activity of Ulva fasciata and its impact on carbohydrate metabolism enzymes in alloxan induced diabetic rats, Int. J. Res. Pharmacol. Phytochem. 3 (3) (2013) 136-141.

[44]

H. Maeda, S. Kanno, M. Kodate, M. Hosokawa, K. Miyashita, Fucoxanthinol, metabolite of fucoxanthin, improves obesity-induced inflammation in adipocyte cells, Mar. Drugs 13 (8) (2015) 4799-4813.

[45]

E. Apostolidis, P.D. Karayannakidis, Y. -I. Kwon, C.M. Lee, N.P. Seeram, Seasonal variation of phenolic antioxidant-mediated α-glucosidase inhibition of Ascophyllum nodosum, Plant Foods Hum. Nutr. 66 (4) (2011) 313-319.

[46]

K.T. Kim, L.E. Rioux, S.L. Turgeon, Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum, Phytochemistry 98 (2014) 27-33.

[47]

K. Iwai, Antidiabetic and antioxidant effects of polyphenols in Brown Alga Ecklonia stolonifera in genetically diabetic KK-Ay mice, Plant Foods Hum. Nutr. 63 (4) (2008) 163.

[48]

S.H. Lee, Y.J. Jeon, Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms, Fitoterapia 86 (2013) 129-136.

[49]

J. Kellogg, D. Esposito, M.H. Grace, S. Komarnytsky, M.A. Lila, Alaskan seaweeds lower inflammation in RAW 264.7 macrophages and decrease lipid accumulation in 3T3-L1 adipocytes, J. Funct. Foods 15 (2015) 396-407.

[50]

S. Ermakova, R. Sokolova, S. -M. Kim, B. -H. Um, V. Isakov, T. Zvyagintseva, Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata: structural characteristics and anticancer activity, Appl. Biochem. Biotechnol. 164 (6) (2011) 841-850.

[51]

M.T. Ale, H. Maruyama, H. Tamauchi, J.D. Mikkelsen, A.S. Meyer, Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro, Mar. Drugs 9 (12) (2011) 2605-2621.

[52]

F. Namvar, S. Mohamed, S.G. Fard, J. Behravan, N.M. Mustapha, N.B.M. Alitheen, F. Othman, Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction, Food Chem. 130 (2) (2012) 376-382.

[53]

N. Mikami, M. Hosokawa, K. Miyashita, H. Sohma, Y.M. Ito, Y. Kokai, Reduction of HbA1c levels by fucoxanthin-enriched akamoku oil possibly involves the thrifty allele of uncoupling protein 1 (UCP1): a randomised controlled trial in normal-weight and obese Japanese adults, J. Nutr. Sci. 6 (2017), e5-e5.

[54]

K. Yoshinaga, Y. Nakai, H. Izumi, K. Nagaosa, T. Ishijima, T. Nakano, K. Abe, Oral administration of edible seaweed undaria pinnatifida (Wakame) modifies glucose and lipid metabolism in rats: a DNA microarray analysis, Mol. Nutr. Food Res. 62 (12) (2018) 1700828.

[55]

A. Grasa-López, Á. Miliar-García, L. Quevedo-Corona, N. Paniagua-Castro, G. Escalona-Cardoso, E. Reyes-Maldonado, M. -E. Jaramillo-Flores, Undaria pinnatifida and fucoxanthin ameliorate lipogenesis and markers of both inflammation and cardiovascular dysfunction in an animal model of diet-induced obesity, Mar. Drugs 14 (8) (2016) 148.

[56]

M.A. Gammone, N. D'Orazio, Anti-obesity activity of the marine carotenoid fucoxanthin, Mar. Drugs 13 (4) (2015) 2196-2214.

[57]

S.I. Kang, H. -S. Shin, H. -M. Kim, S. -A. Yoon, S. -W. Kang, J. -H. Kim, H. -C. Ko, S. -J. Kim, Petalonia binghamiae extract and its constituent fucoxanthin ameliorate high-fat diet-induced obesity by activating AMP-Activated protein kinase, J. Agric. Food Chem. 60 (13) (2012) 3389-3395.

[58]

H. Qi, L. Huang, X. Liu, D. Liu, Q. Zhang, S. Liu, Antihyperlipidemic activity of high sulfate content derivative of polysaccharide extracted from Ulva pertusa (Chlorophyta), Carbohydr. Polym. 87 (2) (2012) 1637-1640.

[59]

C. Austin, D. Stewart, J.W. Allwood, G.J. McDougall, Extracts from the edible seaweed, Ascophyllum nodosum, inhibit lipase activity in vitro: contributions of phenolic and polysaccharide components, Food Funct. 9 (1) (2018) 502-510.

[60]

P.I. Chater, M. Wilcox, P. Cherry, A. Herford, S. Mustar, H. Wheater, I. Brownlee, C. Seal, J. Pearson, Inhibitory activity of extracts of Hebridean brown seaweeds on lipase activity, J. Appl. Phycol. 28 (2) (2016) 1303-1313.

[61]

A.R. Ganesan, M. Shanmugam, R. Bhat, Quality enhancement of chicken sausage by semi‐refined carrageenan, J. Food Process. Preserv. (2019) e13988.

[62]

T.H. Yang, H. -T. Yao, M. -T. Chiang, Red algae (Gelidium amansii) hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet, J. Food Drug Anal. 25 (4) (2017) 931-938.

[63]

P. Matanjun, S. Mohamed, K. Muhammad, N.M. Mustapha, Comparison of cardiovascular protective effects of tropical seaweeds, kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats, J. Med. Food 13 (4) (2010) 792-800.

[64]

J. Kellogg, D. Esposito, M.H. Grace, S. Komarnytsky, M.A. Lila, Alaskan seaweeds lower inflammation in RAW 264.7 macrophages and decrease lipid accumulation in 3T3-L1 adipocytes, J. Funct. Foods 15 (2015) 396-407.

[65]

M.W. -A. Airanthi, N. Sasaki, S. Iwasaki, N. Baba, M. Abe, M. Hosokawa, K. Miyashita, Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver, J. Agric. Food Chem. 59 (8) (2011) 4156-4163.

[66]

K. Ruqqia, V. Sultana, J. Ara, S. Ehteshamul-Haque, M. Athar, Hypolipidaemic potential of seaweeds in normal, triton-induced and high-fat diet-induced hyperlipidaemic rats, J. Appl. Phycol. 27 (1) (2015) 571-579.

[67]

M. Fertah, A. Belfkira, M. Taourirte, F. Brouillette, Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed, Arab. J. Chem. 10 (2017) S3707-S3714.

[68]

A.I. Usov, Structural analysis of red seaweed galactans of agar and carrageenan groups, Food Hydrocoll. 12 (3) (1998) 301-308.

[69]

G. Rajauria, B. Foley, N. Abu-Ghannam, Characterization of dietary fucoxanthin from Himanthalia elongata brown seaweed, Food Res. Int. 99 (2017) 995-1001.

[70]

M.G. Sajilata, R.S. Singhal, M.Y. Kamat, The carotenoid pigment zeaxanthin—a review, Compr. Rev. Food Sci. Food Saf. 7 (1) (2008) 29-49.

[71]

S. -H. Lee, M. -H. Park, S. -J. Heo, S. -M. Kang, S. -C. Ko, J. -S. Han, Y. -J. Jeon, Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice, Food Chem. Toxicol. 48 (10) (2010) 2633-2637.

[72]

K.Y. Kim, T.H. Nguyen, H. Kurihara, S.M. Kim, Α-glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia, J. Food Sci. 75 (5) (2010) H145-H150.

[73]

H.E. Moon, M.N. Islam, B.R. Ahn, S.S. Chowdhury, H.S. Sohn, H.A. Jung, J.S. Choi, Protein tyrosine phosphatase 1B and α-glucosidase inhibitory phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis, Biosci. Biotechnol. Biochem. 75 (8) (2011) 1472-1480.

[74]

P.A. Hwang, Y. -L. Hung, Y. -K. Tsai, S. -Y. Chien, Z. -L. Kong, The brown seaweed Sargassum hemiphyllum exhibits α-amylase and α-glucosidase inhibitory activity and enhances insulin release in vitro, Cytotechnology 67 (4) (2015) 653-660.

[75]

J. Kellogg, M.H. Grace, M.A. Lila, Phlorotannins from Alaskan seaweed inhibit carbolytic enzyme activity, Mar. Drugs 12 (10) (2014) 5277-5294.

[76]

M. Rahnasto-Rilla, P. McLoughlin, T. Kulikowicz, M. Doyle, V. Bohr, M. Lahtela-Kakkonen, R. Moaddel, The identification of a SIRT6 activator from brown algae Fucus distichus, Mar. Drugs 15 (6) (2017) 190.

[77]

J.H. Kang, H. -A. Lee, H. -J. Kim, J. -S. Han, Gelidium amansii extract ameliorates obesity by down-regulating adipogenic transcription factors in diet-induced obese mice, Nutr. Res. Pract. 11 (1) (2017) 17-24.

[78]

P.C. Chao, C.C. Hsu, W.H. Liu, Renal protective effects of Porphyra dentate aqueous extract in diabetic mice, Biomedicine 4 (3) (2014).

[79]

A. -C. Ma, Z. Chen, T. Wang, N. Song, Q. Yan, Y. -C. Fang, H. -S. Guan, H. -B. Liu, Isolation of the molecular species of monogalactosyldiacylglycerols from brown edible seaweed Sargassum horneri and their inhibitory effects on triglyceride accumulation in 3T3-L1 adipocytes, J. Agric. Food Chem. 62 (46) (2014) 11157-11162.

[80]

B.R. Sharma, D.Y. Rhyu, Anti-diabetic effects of Caulerpa lentillifera: stimulation of insulin secretion in pancreatic β-cells and enhancement of glucose uptake in adipocytes, Asian Pac. J. Trop. Biomed. 4 (7) (2014) 575-580.

[81]

K. Pirian, S. Moein, J. Sohrabipour, R. Rabiei, J. Blomster, Antidiabetic and antioxidant activities of brown and red macroalgae from the Persian Gulf, J. Appl. Phycol. 29 (6) (2017) 3151-3159.

[82]

H. Nagappan, P.P. Pee, S.H.Y. Kee, J.T. Ow, S.W. Yan, L.Y. Chew, K.W. Kong, Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase inhibition activities, Food Res. Int. 99 (2017) 950-958.

[83]

H.C. Liu, C. -J. Chang, T. -H. Yang, M. -T. Chiang, Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model, J. Food Drug Anal. 25 (3) (2017) 543-549.

[84]

M. -C. Kang, N. Kang, S. -C. Ko, Y. -B. Kim, Y. -J. Jeon, Anti-obesity effects of seaweeds of Jeju Island on the differentiation of 3T3-L1 preadipocytes and obese mice fed a high-fat diet, Food Chem. Toxicol. 90 (2016) 36-44.

[85]

R. Ben Abdallah Kolsi, A. Ben Gara, R. Chaaben, A. El Feki, F. Paolo Patti, L. El Feki, K. Belghith, Anti-obesity and lipid lowering effects of Cymodocea nodosa sulphated polysaccharide on high cholesterol-fed-rats, Arch. Physiol. Biochem. 121 (5) (2015) 210-217.

[86]

Z. Chen, J. Liu, Z. Fu, C. Ye, R. Zhang, Y. Song, Y. Zhang, H. Li, H. Ying, H. Liu, 24 (S)-Saringosterol from edible marine seaweed Sargassum fusiforme is a novel selective LXRβ agonist, J. Agric. Food Chem. 62 (26) (2014) 6130-6137.

[87]

M.J. Yim, M. Hosokawa, Y. Mizushina, H. Yoshida, Y. Saito, K. Miyashita, Suppressive effects of amarouciaxanthin a on 3T3-L1 adipocyte differentiation through down-regulation of PPARγ and C/EBPα mRNA expression, J. Agric. Food Chem. 59 (5) (2011) 1646-1652.

[88]

J.H. Lee, J. -Y. Ko, H. -H. Kim, C. -Y. Kim, J. -H. Jang, J. -W. Nah, Y. -J. Jeon, Efficient approach to purification of octaphlorethol A from brown seaweed, Ishige foliacea by centrifugal partition chromatography, Algal Res. 22 (2017) 87-92.

[89]

L. González-Torres, I. Churruca, A.R. Schultz Moreira, S. Bastida, J. Benedí, M.P. Portillo, F.J. Sánchez-Muniz, Effects of restructured pork containing Himanthalia elongata on adipose tissue lipogenic and lipolytic enzyme expression of Normo- and hypercholesterolemic rats, Lifestyle Genomics 5 (3) (2012) 158-167.

[90]

P.S. Unnikrishnan, M.A. Jayasri, Antidiabetic studies of Chaetomorpha antennina extract using experimental models, J. Appl. Phycol. 29 (2) (2017) 1047-1056.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 March 2019
Revised: 16 July 2019
Accepted: 06 August 2019
Published: 10 August 2019
Issue date: September 2019

Copyright

© 2019 "Society information".

Acknowledgements

Acknowledgement

None.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return