Journal Home > Volume 8 , Issue 3

Pyroglutamyl (pGlu) peptides are formed from intramolecular cyclization of glutamine or glutamic acid residue at the N-terminal position of peptides. This process can occur endogenously or during processing of foods containing the peptides. Some factors such as heat, high pressure and enzymatic modifications contribute to pGlu formation. pGlu peptides are thought to have different characteristics, especially bitter and umani tastes, and thus can affect the sensory properties of foods that contain them. Moreover, some health-promoting properties have been reported for pGlu peptides, including hepatoprotective, antidepressant and anti-inflammatory activities. However, the role of pGlu residue in the peptide bioactivity is not completely established, although the hydrophobic γ-lactam ring is thought to enhance the peptide stability against degradation by gastrointestinal proteases. This review discusses the occurrence and formation of pGlu peptides in foods, their quantification, sensory and biological properties, and prospects in food applications.


menu
Abstract
Full text
Outline
About this article

Occurrence, properties and biological significance of pyroglutamyl peptides derived from different food sources

Show Author's information Behzad Gazmea,1Ruth T. Boachiea,1Apollinaire TsopmobChibuike C. Udenigwea,c( )
School of Nutrition Sciences, Faculty of Health Sciences, 415 Smyth Road, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

1 These authors contributed equally.

Peer review under responsibility of KeAi Communications Co., Ltd

Abstract

Pyroglutamyl (pGlu) peptides are formed from intramolecular cyclization of glutamine or glutamic acid residue at the N-terminal position of peptides. This process can occur endogenously or during processing of foods containing the peptides. Some factors such as heat, high pressure and enzymatic modifications contribute to pGlu formation. pGlu peptides are thought to have different characteristics, especially bitter and umani tastes, and thus can affect the sensory properties of foods that contain them. Moreover, some health-promoting properties have been reported for pGlu peptides, including hepatoprotective, antidepressant and anti-inflammatory activities. However, the role of pGlu residue in the peptide bioactivity is not completely established, although the hydrophobic γ-lactam ring is thought to enhance the peptide stability against degradation by gastrointestinal proteases. This review discusses the occurrence and formation of pGlu peptides in foods, their quantification, sensory and biological properties, and prospects in food applications.

Keywords: Bioavailability, Bioactive peptides, Sensory properties, Pyroglutamyl peptides, Peptide quantification

References(58)

[1]

A. Awade, P. Cleuziat, T. Gonzales, J. Robert-Baudouy, Pyrrolidone carboxyl peptidase (Pcp): an enzyme that removes pyroglutamic acid (pGlu) from pGlu-peptides and pGlu-proteins, Proteins 20 (1994) 34–51, http://dx.doi.org/10.1002/prot.340200106.

[2]

F. Seifert, K. Schulz, B. Koch, S. Manhart, H. -U. Demuth, et al., Glutaminyl cyclases display significant catalytic proficiency for glutamyl substrates, Biochemistry 48 (2009) 11831–11833, http://dx.doi.org/10.1021/bi9018835.

[3]

T. Kiyono, K. Hirooka, Y. Yamamoto, S. Kuniishi, M. Ohtsuka, et al., Identification of pyroglutamyl peptides in Japanese rice wine (sake): presence of hepatoprotective pyroGlu-Leu, J. Agric. Food Chem. 61 (2013)11660–11667, http://dx.doi.org/10.1021/jf404381w.

[4]

W.H. Fischer, J. Spiess, Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides, Proc. Natl. Acad. Sci. U. S.A. 84 (1987) 3628–3632, http://dx.doi.org/10.1073/pnas.84.11.3628.

[5]

B. Blombäck, Derivatives of glutamine in peptides, Methods Enzymol. 11(1967) 398–411, http://dx.doi.org/10.1016/S0076-6879(67)11046-X.

[6]

T. Schneider, P. Butz, H. Ludwig, B. Tauscher, Pressure-induced formation of pyroglutamic acid from glutamine in neutral and alkaline solutions, LWT -Food Sci. Technol. 36 (2003) 365–367, http://dx.doi.org/10.1016/S0023-6438(02)00006-3.

[7]

S. Schilling, T. Hoffmann, S. Manhart, M. Hoffmann, H. -U. Demuth, Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions, FEBS Lett. 563 (2004) 191–196, http://dx.doi.org/10.1016/S0014-5793(04)00300-X.

[8]

R.W. Garden, T.P. Moroz, J.M. Gleeson, P.D. Floyd, L. Li, et al., Formation of N-pyroglutamyl peptides from N-Glu and N-Gln precursors in Aplysia neurons, J. Neurochem. 72 (1999) 676–681, http://dx.doi.org/10.1046/j.1471-4159.1999.0720676.x.

[9]

F. Masotti, I. De Noni, S. Cattaneo, M. Brasca, V. Rosi, et al., Occurrence, origin and fate of pyroglutamyl-γ3-casein in cheese, Int. Dairy J. 33 (2013) 90–96, http://dx.doi.org/10.1016/j.idairyj.2013.06.002.

[10]

T. Pohl, M. Zimmer, K. Mugele, J. Spiess, Primary structure and functional expression of a glutaminyl cyclase, Proc. Natl. Acad. Sci. U. S. A. 88 (1991)10059–10063, http://dx.doi.org/10.1073/pnas.88.22.10059.

[11]

P. -T. Tran, V. -H. Hoang, S.A. Thorat, S.E. Kim, J. Ann, et al., Structure–activity relationship of human glutaminyl cyclase inhibitors having an N-(5-methyl-1H-imidazol-1-yl) propyl thiourea template, Bioorg. Med. Chem. 21 (2013) 3821–3830, http://dx.doi.org/10.1016/j.bmc.2013.04.005.

[12]

G. Mucchetti, F. Locci, M. Gatti, E. Neviani, F. Addeo, et al., Pyroglutamic acid in cheese: presence, origin, and correlation with ripening time of Grana Padano cheese, J. Dairy Sci. 83 (2000) 659–665, http://dx.doi.org/10.3168/jds.S0022-0302(00)74926-5.

[13]

G. Mucchetti, F. Locci, P. Massara, R. Vitale, E. Neviani, Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses, J. Dairy Sci. 85 (2002) 2489–2496, http://dx.doi.org/10.3168/jds.S0022-0302(02)74331-2.

[14]

J.D.D. Lindner, V. Bernini, A. De Lorentiis, A. Pecorari, E. Neviani, et al., Parmigiano Reggiano cheese: evolution of cultivable and total lactic microflora and peptidase activities during manufacture and ripening, Dairy Sci. Technol. 88 (2008) 511–523, http://dx.doi.org/10.1051/dst:2008019.

[15]

S. Paolella, B. Prandi, C. Falavigna, S. Buhler, A. Dossena, et al., Occurrence of non-proteolytic amino acyl derivatives in dry-cured ham, Food Res. Int. 114(2018) 38–46, http://dx.doi.org/10.1016/j.foodres.2018.07.057.

[16]

M. Altamura, R. Andreotti, M.L. Bazinet, L. Long Jr., Pyroglutamyl dipeptides in mushroom, Agaricus campestris, J. Food Sci. 35 (1970) 134–139, http://dx.doi.org/10.1111/j.1365-2621.1970.tb12122.x.

[17]

Y. Suzuki, H. Motoi, K. Sato, Quantitative analysis of pyroglutamic acid in peptides, J. Agric. Food Chem. 47 (1999) 3248–3251, http://dx.doi.org/10.1021/jf990003z.

[18]

K. Sato, R. Nisimura, Y. Suzuki, H. Motoi, Y. Nakamura, et al., Occurrence of indigestible pyroglutamyl peptides in an enzymatic hydrolysate of wheat gluten prepared on an industrial scale, J. Agric. Food Chem. 46 (1998)3403–3405, http://dx.doi.org/10.1021/jf980603i.

[19]

N. Higaki-Sato, K. Sato, Y. Esumi, T. Okumura, H. Yoshikawa, et al., Isolation and identification of indigestible pyroglutamyl peptides in an enzymatic hydrolysate of wheat gluten prepared on an industrial scale, J. Agric. Food Chem. 51 (2003) 8–13, http://dx.doi.org/10.1021/jf020528i.

[20]

Y. Yamamoto, T. Mizushige, Y. Mori, Y. Shimmura, R. Fukutomi, et al., Antidepressant-like effect of food-derived pyroglutamyl peptides in mice, Neuropeptides 51 (2015) 25–29, http://dx.doi.org/10.1016/j.npep.2015.04.002.

[21]

K. Sato, Y. Egashira, S. Ono, S. Mochizuki, Y. Shimmura, et al., Identification of a hepatoprotective peptide in wheat gluten hydrolysate against D-galactosamine-induced acute hepatitis in rats, J. Agric. Food Chem. 61(2013) 6304–6310, http://dx.doi.org/10.1021/jf400914e.

[22]

T. Kiyono, S. Wada, R. Ohta, E. Wada, T. Takagi, et al., Identification of pyroglutamyl peptides with anti-colitic activity in Japanese rice wine, sake, by oral administration in a mouse model, J. Funct. Foods 27 (2016) 612–621, http://dx.doi.org/10.1016/j.jff.2016.10.014.

[23]

S. Sforza, V. Cavatorta, G. Galaverna, A. Dossena, R. Marchelli, Accumulation of non-proteolytic aminoacyl derivatives in Parmigiano-Reggiano cheese during ripening, Int. Dairy J. 19 (2009) 582–587, http://dx.doi.org/10.1016/j.idairyj.2009.04.009.

[24]

S. Kaneko, K. Kumazawa, O. Nishimura, Isolation and identification of the umami enhancing compounds in Japanese soy sauce, Biosci. Biotechnol. Biochem. 75 (2011), 1105282507, http://dx.doi.org/10.1271/bbb.110041.

[25]

E. Frerot, T. Chen, Identification and quantitation of new glutamic acid derivatives in soy sauce by UPLC/MS/MS, Chem. Biodivers. 10 (2013)1842–1850, http://dx.doi.org/10.1002/cbdv.201300150.

[26]

S. Yao, C.C. Udenigwe, Peptidomics of potato protein hydrolysates: implications of post-translational modifications in food peptide structure and behaviour, R. Soc. Open Sci. (2018) 172425, http://dx.doi.org/10.1098/rsos.172425.

[27]

N. Higaki-Sato, K. Sato, N. Inoue, Y. Nawa, Y. Kido, et al., Occurrence of the free and peptide forms of pyroglutamic acid in plasma from the portal blood of rats that had ingested a wheat gluten hydrolysate containing pyroglutamyl peptides, J. Agric. Food Chem. 54 (2006) 6984–6988, http://dx.doi.org/10.1021/jf0611421.

[28]

K. Hashizume, T. Ito, Y. Nagae, T. Tokiwano, Quantitation and sensory properties of three newly identified pyroglutamyl oligopeptides in sake, Biosci. Biotechnol. Biochem. 83 (2019) 357–364, http://dx.doi.org/10.1080/09168451.2018.1530095.

[29]

K. Hashizume, T. Ito, S. Igarashi, Quantitation using a stable isotope dilution assay (SIDA) and thresholds of taste-active pyroglutamyl decapeptide ethyl esters (PGDPEs) in sake, Biosci. Biotechnol. Biochem. 81 (2017) 426–430, http://dx.doi.org/10.1080/09168451.2016.1259554.

[30]

N. Baryłko-Pikielna, E. Kostyra, Sensory interaction of umami substances with model food matrices and its hedonic effect, Food Qual. Prefer. 18 (2007)751–758, http://dx.doi.org/10.1016/j.foodqual.2007.01.002.

[31]

H. Schlichtherle-Cerny, R. Amadò, Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten, J. Agric. Food Chem. 50(2002) 1515–1522, http://dx.doi.org/10.1021/jf010989o.

[32]

C.J. Zhao, A. Schieber, M.G. Gänzle, Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations–a review, Food Res. Int. 89 (2016) 39–47, http://dx.doi.org/10.1016/j.foodres.2016.08.042.

[33]
H. Rastogi, S. Bhatia, Future Prospectives for Enzyme Technologies in the Food Industry, Enzymes in Food Biotechnology, Elsevier, 2019, pp. 845–860, http://dx.doi.org/10.1016/B978-0-12-813280-7.00049-9.
DOI
[34]

H.N. Lioe, J. Selamat, M. Yasuda, Soy sauce and its umami taste: a link from the past to current situation, J. Food Sci. 75 (2010) R71–R76, http://dx.doi.org/10.1111/j.1750-3841.2010.01529.x.

[35]

C. Winkel, A. de Klerk, J. Visser, E. de Rijke, J. Bakker, et al., New developments in umami (enhancing) molecules, Chem. Biodivers. 5 (2008) 1195–1203, http://dx.doi.org/10.1002/cbdv.200890096.

[36]
M. McKenzie, V. Corrigan, Potato Flavor. Advances in Potato Chemistry and Technology, Elsevier, 2016, pp. 339–368.
DOI
[37]

S. Yamamoto, K. Shiga, Y. Kodama, M. Imamura, R. Uchida, et al., Analysis of the correlation between dipeptides and taste differences among soy sauces by using metabolomics-based component profiling, J. Biosci. Bioeng. 118 (2014)56–63, http://dx.doi.org/10.1016/j.jbiosc.2013.12.019.

[38]

M. Imamura, K. Matsushima, Suppression of umami aftertaste by polysaccharides in soy sauce, J. Food Sci. 78 (2013) C1136–C1143, http://dx.doi.org/10.1111/1750-3841.12195.

[39]

H.N. Lioe, K. Takara, M. Yasuda, Evaluation of peptide contribution to the intense umami taste of Japanese soy sauces, J. Food Sci. 71 (2006) S277–S283, http://dx.doi.org/10.1111/j.1365-2621.2006.tb15654.x.

[40]

H. Katsura, T. Okada, M. Miki, M. Kobayashi, Relationship between pyroglutamyl peptides and taste in soy sauce supplemented with wheat gluten, Seibutsu-Kogaku Kaishi 83 (1) (2005) 2–6.

[41]

K. Hashizume, M. Okuda, M. Numata, K. Iwashita, Bitter-tasting sake peptides derived from the N-terminus of the rice glutelin acidic subunit, J. Food Sci. Technol. 13 (2007) 270–274, http://dx.doi.org/10.3136/fstr.13.270.

[42]

K. Hashizume, T. Ito, M. Shimohashi, A. Kokita, T. Tokiwano, Taste-guided fractionation and instrumental analysis of hydrophobic compounds in sake, Biosci. Biotechnol. Biochem. 76 (2012) 1291–1295, http://dx.doi.org/10.1271/bbb.120046.

[43]

C.C. Udenigwe, Bioinformatics approaches, prospects and challenges of food bioactive peptide research, Trends Food Sci. Technol. 36 (2014) 137–143, http://dx.doi.org/10.1016/j.tifs.2014.02.004.

[44]

P.A. Temussi, The good taste of peptides, J. Pept. Sci. 18 (2012) 73–82, http://dx.doi.org/10.1002/psc.1428.

[45]

N. Chaudhari, A.M. Landin, S.D. Roper, A metabotropic glutamate receptor variant functions as a taste receptor, Nat. Neurosci. 3 (2000) 113.

[46]

X. Li, L. Staszewski, H. Xu, K. Durick, M. Zoller, E. Adler, et al., Human receptors for sweet and umami taste, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 4692–4696, http://dx.doi.org/10.1073/pnas.072090199.

[47]

G. Nelson, J. Chandrashekar, M.A. Hoon, L. Feng, G. Zhao, et al., An amino-acid taste receptor, Nature 416 (2002) 199.

[48]

A. San Gabriel, H. Uneyama, S. Yoshie, K. Torii, Cloning and characterization of a novel mGluR1 variant from vallate papillae that functions as a receptor for L-glutamate stimuli, Chem. Senses 30 (2005) i25–i26, http://dx.doi.org/10.1093/chemse/bjh095.

[49]

J. Chandrashekar, M.A. Hoon, N.J. Ryba, C.S. Zuker, The receptors and cells for mammalian taste, Nature 444 (2006) 288.

[50]

K. Maehashi, L. Huang, Bitter peptides and bitter taste receptors, Cell. Mol. Life Sci. 66 (2009) 1661–1671, http://dx.doi.org/10.1007/s00018-009-8755-9.

[51]

Y. Zhang, C. Venkitasamy, Z. Pan, W. Liu, L. Zhao, Novel umami ingredients: umami peptides and their taste, J. Food Sci. 82 (2017) 16–23, http://dx.doi.org/10.1111/1750-3841.13576.

[52]

K. Sato, Structure, content, and bioactivity of food-derived peptides in the body, J. Agric. Food Chem. 66 (2018) 3082–3085, http://dx.doi.org/10.1021/acs.jafc.8b00390.

[53]

A. Ejima, M. Nakamura, Y.A. Suzuki, K. Sato, Identification of food-derived peptides in human blood after ingestion of corn and wheat gluten hydrolysates, J Food Bioact. 53 (2018) 104–111, http://dx.doi.org/10.1021/jf050206p.

[54]

S. Wada, K. Sato, R. Ohta, E. Wada, Y. Bou, et al., Ingestion of low dose pyroglutamyl leucine improves dextran sulfate sodium-induced colitis and intestinal microbiota in mice, J. Agric. Food Chem. 61 (2013) 8807–8813, http://dx.doi.org/10.1021/jf402515a.

[55]

S. Hirai, S. Horii, Y. Matsuzaki, S. Ono, Y. Shimmura, et al., Anti-inflammatory effect of pyroglutamyl-leucine on lipopolysaccharide-stimulated RAW 264.7 macrophages, Life Sci. 117 (2014) 1–6, http://dx.doi.org/10.1016/j.lfs.2014.08.017.

[56]

W. He, C.J. Barrow, The Aβ 3-pyroglutamyl and 11-pyroglutamyl peptides found in senile plaque have greater β-sheet forming and aggregation propensities in vitro than full-length Aβ, Biochemistry 38 (1999)10871–10877, http://dx.doi.org/10.1021/bi990563r.

[57]

D. Schlenzig, S. Manhart, Y. Cinar, M. Kleinschmidt, et al., Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides, Biochemistry 48 (2009) 7072–7078, http://dx.doi.org/10.1021/bi900818a.

[58]

T.C. Russo, L.M. Saido, M. DeBusk, P. Tabaton, Gambetti, et al., Heterogeneity of water-soluble amyloid β-peptide in Alzheimer's disease and Down's syndrome brains, FEBS Lett. (1997) 411–416, http://dx.doi.org/10.1016/S0014-5793(97)00564-4.

Publication history
Copyright
Rights and permissions

Publication history

Received: 13 March 2019
Revised: 01 May 2019
Accepted: 27 May 2019
Published: 28 May 2019
Issue date: September 2019

Copyright

© 2019 "Society information".

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return