Journal Home > Volume 8 , Issue 2

Surfactant food emulsifiers are among the most extensively used food additives. Like all authorized food additives, emulsifiers have been evaluated by risk assessors, who consider them as safe. However, there are growing concerns among scientists about their possible harmful effects on intestinal barriers and microbiota. It is also suggested that emulsifier consumption might be one of the main causes of the rising incidence of a number of diseases, such as allergic diseases, celiac disease, type Ⅰ diabetes and Crohn's disease. Moreover, it has recently been suggested that emulsifier consumption might contribute to the development of metabolic syndrome and can promote colitis-associated colorectal cancer also. This paper provides an overview of the current scientific knowledge on possible effects of surfactant emulsifiers on intestinal barriers and also of regulatory risk assessment approaches. Our main objective is to reveal the reasons for the discrepancies between the opinions of risk assessors and the scientific world. We would like to draw the attention of the academic world to the need of specific in vivo and/or clinical studies for each emulsifier in order to help risk assessors make adequate evaluations and rule out with certainty that authorized food emulsifiers pose a safety concern to consumers' health.


menu
Abstract
Full text
Outline
About this article

Who will carry out the tests that would be necessary for proper safety evaluation of food emulsifiers?

Show Author's information Katalin F. Csáki( )Éva Sebestyén
National Food Chain Safety Office, Directorate for Food Safety Risk Assessment, PO BOX 407, H-1537 Budapest, Hungary

Abstract

Surfactant food emulsifiers are among the most extensively used food additives. Like all authorized food additives, emulsifiers have been evaluated by risk assessors, who consider them as safe. However, there are growing concerns among scientists about their possible harmful effects on intestinal barriers and microbiota. It is also suggested that emulsifier consumption might be one of the main causes of the rising incidence of a number of diseases, such as allergic diseases, celiac disease, type Ⅰ diabetes and Crohn's disease. Moreover, it has recently been suggested that emulsifier consumption might contribute to the development of metabolic syndrome and can promote colitis-associated colorectal cancer also. This paper provides an overview of the current scientific knowledge on possible effects of surfactant emulsifiers on intestinal barriers and also of regulatory risk assessment approaches. Our main objective is to reveal the reasons for the discrepancies between the opinions of risk assessors and the scientific world. We would like to draw the attention of the academic world to the need of specific in vivo and/or clinical studies for each emulsifier in order to help risk assessors make adequate evaluations and rule out with certainty that authorized food emulsifiers pose a safety concern to consumers' health.

Keywords: Microbiota, Risk assessment, Surfactants, Food emulsifiers, Intestinal barriers, Crohn's diseases, EFSA

References(92)

[1]

K.F. Csáki, Synthetic surfactant food additives can cause intestinal barrier dysfunction, Med. Hypotheses (2011), http://dx.doi.org/10.1016/j.mehy.2011.01.030.

[2]

A. Lerner, T. Matthias, Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease, Autoimmun. Rev. (2015), http://dx.doi.org/10.1016/j.autrev.2015.01.009.

[3]

A.W. Abu-Qare, E. Elmasry, M.B. Abou-Donia, A role for P-Glycoprotein in environmental toxicology, J. Toxicol. Environ. Heal. - Part B Crit. Rev. (2003), http://dx.doi.org/10.1080/10937400306466.

[4]

H.T. Gao, R. Xu, W.X. Cao, X. Zhou, Y.H.M. Yan, L. Lu, Q. Xu, Y. Shen, Food emulsifier glycerin monostearate increases internal exposure levels of six priority controlled phthalate esters and exacerbates their male reproductive toxicities in rats, PLoS One (2016), http://dx.doi.org/10.1371/journal.pone.0161253.

[5]

J. König, J. Wells, P.D. Cani, C.L. García-Ródenas, T. MacDonald, A. Mercenier, J. Whyte, F. Troost, R.J. Brummer, Human intestinal barrier function in health and disease, Clin. Transl. Gastroenterol. (2016), http://dx.doi.org/10.1038/ctg.2016.54.

[6]
E. Touitou, B.W. Barry (Eds.), Enhancement in Drug Delivery, Taylor and Francis Group, Boca Raton, 2007.
DOI
[7]

A. Lugea, A. Salas, J. Casalot, F. Guarner, J.R. Malagelada, Surface hydrophobicity of the rat colonic mucosa is a defensive barrier against macromolecules and toxins, Gut (2000), http://dx.doi.org/10.1136/gut.46.4.515.

[8]

A. Sood, R. Panchagnula, Peroral route: an opportunity for protein and peptide drug delivery, Chem. Rev. (2001), http://dx.doi.org/10.1021/cr000700m.

[9]

B. Chassaing, O. Koren, J.K. Goodrich, A.C. Poole, S. Srinivasan, R.E. Ley, A.T. Gewirtz, Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome, Nature (2015), http://dx.doi.org/10.1038/nature14232.

[10]

F. McCartney, J.P. Gleeson, D.J. Brayden, Safety concerns over the use of intestinal permeation enhancers: a mini-review, Tissue Barriers (2016), http://dx.doi.org/10.1080/21688370.2016.1176822.

[11]

EFSA ANS Panel, Scientific Opinion on the re-evaluation of polyoxyethylene sorbitan monolaurate (E 432), polyoxyethylene sorbitan monooleate (E 433), polyoxyethylene sorbitan monopalmitate (E 434), polyoxyethylene sorbitan monostearate (E 435) and polyoxyethylene sorbita, EFSA J. 13 (2015) 4152, http://dx.doi.org/10.2903/j.efsa.2015.4152.

[12]

EFSA ANS Panel, Scientific opinion on the re-evaluation of mono- and di-glycerides of fatty acids (E 471) as food additives, EFSA J. 15 (2017) 5045, http://dx.doi.org/10.2903/j.efsa.2017.5045.

[13]

EFSA ANS Panel, Scientific Opinion on the re-evaluation of sucrose acetate isobutyrate (E 444) as a food additive, EFSA J. 14 (2016) 4489, http://dx.doi.org/10.2903/j.efsa.2016.4489.

[14]

EFSA ANS Panel, Re-evaluation of polyglycerol polyricinoleate (E 476) as a food additive, EFSA J. (2017), http://dx.doi.org/10.2903/j.efsa.2017.4743.

[15]

EFSA ANS Panel, Scientific Opinion on the re-evaluation of polyglycerol esters of fatty acids (E 475) as a food additive, EFSA J. 15 (2017) 5089, http://dx.doi.org/10.2903/j.efsa.2017.5089.

[16]

EFSA ANS Panel, Scientific Opinion on the re-evaluation of sorbitan monostearate (E 491), sorbitan tristearate (E 492), sorbitan monolaurate (E 493), sorbitan monooleate (E 494) and sorbitan monopalmitate (E 495) when used as food additives, EFSA J. 15 (2017) 4788, http://dx.doi.org/10.2903/j.efsa.2017.4788.

[17]

EFSA ANS Panel, Re-evaluation of oxidised soya bean oil interacted with mono- and diglycerides of fatty acids (E 479b) as a food additive, EFSA J. 16 (2018) 5420, http://dx.doi.org/10.2903/j.efsa.2018.5420.

[18]

EFSA ANS Panel, Re-evaluation of sodium, potassium and calcium salts of fatty acids (E 470a) and magnesium salts of fatty acids (E 470b) as food additives, EFSA J. 16 (2018) 5180, http://dx.doi.org/10.2903/j.efsa.2018.5180.

[19]

EFSA ANS Panel, Re-evaluation of propane-1,2-diol esters of fatty acids (E 477) as a food additive, EFSA J. 16 (2018) 5497, http://dx.doi.org/10.2903/j.efsa.2018.5497.

[20]

T.W. Wong, D.S. Juras, R.W. Wissler, Effect of concurrent feeding of tween 80 on the carcinogenicity of orally administered 3-methylcholanthrene, J. Natl. Cancer Inst. (1959), http://dx.doi.org/10.1093/jnci/22.2.363.

[21]

M. Takahashi, S. Fukushima, S. H, Carcinogenic effect of N-methyl-N'-nitro-N-nitrosoguanidine with various kinds of surfactant in the glandular stomach of rats, Gan 64 (1973) 211, http://dx.doi.org/10.20772/cancersci1959.64.3_211.

[22]

S. Fukushima, M. Tatematsu, M. Takahashi, Combined effect of various surfactants on gastric carcino-genesis in rats treated with N-methyl-N-nitro-N-nitrosoguanidine, Gan 65 (1974) 371, http://dx.doi.org/10.20772/cancersci1959.65.4_371.

[23]

S. Mika Takahashi, Fukushima M. Hananouchi, Induction of undifferentiated adenocarcinoma in the stomach of rats by N methyl N' nitro N nitrosoguanidine with various kinds of surfactant, Gan 17 (1975) 255.

[24]

C. Tagesson, C. Edling, Influence of surface-active food additives on the integrity and permeability of rat intestinal mucosa, Food Chem. Toxicol. (1984), http://dx.doi.org/10.1016/0278-6915(84)90165-0.

[25]

T. Alama, H. Katayama, S. Hirai, S. Ono, A. Kajiyama, K. Kusamori, H. Katsumi, T. Sakane, A. Yamamoto, Enhanced oral delivery of alendronate by sucrose fatty acids esters in rats and their absorption-enhancing mechanisms, Int. J. Pharm. (2016), http://dx.doi.org/10.1016/j.ijpharm.2016.10.046.

[26]

A. Yamamoto, H. Katsumi, K. Kusamori, T. Sakane, Improvement of intestinal absorption of poorly absorbable drugs by various sugar esters, Yakugaku Zasshi (2014), http://dx.doi.org/10.1248/yakushi.13-00221-1.

[27]

H. Onishi, Y. Imura, M. Uchida, Y. Machida, Enhancement potential of sucrose laurate (L-1695) on intestinal absorption of water-soluble high molecular weight compounds, Curr. Drug Deliv. (2012), http://dx.doi.org/10.2174/156720112802650699.

[28]

S. Maher, R.J. Mrsny, D.J. Brayden, Intestinal permeation enhancers for oral peptide delivery, Adv. Drug Deliv. Rev. (2016), http://dx.doi.org/10.1016/j.addr.2016.06.005.

[29]

E. Scott Swenson, W.J. Curatolo, (C) means to enhance penetration. (2) Intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity, Adv. Drug Deliv. Rev. (1992), http://dx.doi.org/10.1016/0169-409X(92)90015-I.

[30]

E. Touitou, M. Donbrow, Promoted rectal absorption of insulin: formulative parameters involved in the absorption from hydrophilic bases, Int. J. Pharm. (1983), http://dx.doi.org/10.1016/0378-5173(83)90063-7.

[31]

Z. Ujhelyi, F. Fenyvesi, J. Váradi, P. Fehér, T. Kiss, S. Veszelka, M. Deli, M. Vecsernyés, I. Bácskay, Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer, Eur. J. Pharm. Sci. (2012), http://dx.doi.org/10.1016/j.ejps.2012.07.005.

[32]

T. Yamagata, H. Kusuhara, M. Morishita, K. Takayama, H. Benameur, Y. Sugiyama, Improvement of the oral drug absorption of topotecan through the inhibition of intestinal xenobiotic efflux transporter, breast cancer resistance protein, by excipients, Drug Metab. Dispos. (2007), http://dx.doi.org/10.1124/dmd.106.014217.

[33]

A.A.A. Al-Ali, J.R.C. Quach, C. Bundgaard, B. Steffansen, R. Holm, C.U. Nielsen, Polysorbate 20 alters the oral bioavailability of etoposide in wild type and mdr1a deficient Sprague-Dawley rats, Int. J. Pharm. (2018), http://dx.doi.org/10.1016/j.ijpharm.2018.04.006.

[34]

N. Takaishi, H. Satsu, M. Shimizu, Enhanced daunomycin accumulation in human intestinal Caco-2 cells from non-ionic food emulsifiers unrelated to the p-glycoprotein inhibitory mechanism, Biosci. Biotechnol. Biochem. (2006), http://dx.doi.org/10.1271/bbb.60306.

[35]

R.L. Oberle, T.J. Moore, D.A.P. Krummel, Evaluation of mucosal damage of surfactants in rat jejunum and colon, J. Pharmacol. Toxicol. Methods (1995), http://dx.doi.org/10.1016/1056-8719(94)00060-H.

[36]

A. Bernkop-Schnürch, C. Valenta, S.M. Daee, Peroral polypeptide delivery. A comparative in vitro study of mucolytic agents, Arzneimittel-Forschung/Drug Res. 49 (1999) 799–803, http://dx.doi.org/10.1055/s-0031-1300504.

[37]

S.C. Bischoff, G. Barbara, W. Buurman, T. Ockhuizen, J.D. Schulzke, M. Serino, H. Tilg, A. Watson, J.M. Wells, Intestinal permeability - a new target for disease prevention and therapy, BMC Gastroenterol. (2014), http://dx.doi.org/10.1186/s12876-014-0189-7.

[38]

C.A. Barta, K. Sachs-Barrable, F. Feng, K.M. Wasan, Effects of monoglycerides on P-glycoprotein: modulation of the activity and expression in Caco-2 cell monolayers, Mol. Pharm. (2008), http://dx.doi.org/10.1021/mp800050q.

[39]

H. Thakkar, J. Desai, Influence of excipients on drug absorption via modulation of intestinal transporters activity, Asian J. Pharm. (2015), http://dx.doi.org/10.4103/0973-8398.154688.

[40]

S. Zhu, R. Huang, M. Hong, Y. Jiang, Z. Hu, C. Liu, Y. Pei, Effects of polyoxyethylene (40) stearate on the activity of P-glycoprotein and cytochrome P450, Eur. J. Pharm. Sci. (2009), http://dx.doi.org/10.1016/j.ejps.2009.05.001.

[41]

T. Yamagata, H. Kusuhara, M. Morishita, K. Takayama, H. Benameur, Y. Sugiyama, Effect of excipients on breast cancer resistance protein substrate uptake activity, J. Control. Release (2007), http://dx.doi.org/10.1016/j.jconrel.2007.08.021.

[42]

A.E. van Herwaarden, E. Wagenaar, B. Karnekamp, G. Merino, J.W. Jonker, A.H. Schinkel, Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk, Carcinogenesis 27 (2005) 123–130, http://dx.doi.org/10.1093/carcin/bgi176.

[43]

C.L. Roberts, S.L. Rushworth, E. Richman, J.M. Rhodes, Hypothesis: increased consumption of emulsifiers as an explanation for the rising incidence of Crohn's disease, J. Crohns Colitis (2013), http://dx.doi.org/10.1016/j.crohns.2013.01.004.

[44]

D. Hollander, Crohn's disease - a permeability disorder of the tight junction? Gut 29 (1988) 1621 https://gut.bmj.com/content/29/12/1621.long.

[45]
A. Michielan, R. D'Incà, Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut, Mediators Inflamm. (2015), http://dx.doi.org/10.1155/2015/628157, Article ID 628157.
DOI
[46]

Q. Mu, J. Kirby, C. Reilly, X. Luo, Leaky Gut as a danger signal for autoimmune diseases, Front. Immunol. 8 (2017) 598, http://dx.doi.org/10.3389/fimmu.2017.00598.

[47]

M.C. Arrieta, L. Bistritz, J.B. Meddings, Alterations in intestinal permeability, Gut 55 (2006) 1512, http://dx.doi.org/10.1136/gut.2005.085373.

[48]

A. Fasano, T. Shea-Donohue, Mechanisms of Disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases, Nat. Clin. Pract. Gastroenterol. Hepatol. 2 (2005) 416, http://dx.doi.org/10.1038/ncpgasthep0259.

[49]

T. Watts, I. Berti, A. Sapone, T. Gerarduzzi, T. Not, R. Zielke, A. Fasano, Role of the intestinal tight junction modulator zonulin in the pathogenesis of type Ⅰ diabetes in BB diabetic-prone rats, PNAS. 102 (2005) 2916, http://dx.doi.org/10.1073/pnas.0500178102.

[50]
A. Fasano, R. Troncone, D. Branski (Eds.), Frontiers in Celiac Disease, Pediatric, KARGER, 2008, http://dx.doi.org/10.1159/isbn.978-3-8055-8527-9.
DOI
[51]

R. D'Incà, V. Di Leo, G. Corrao, D. Martines, A. D'Odorico, C. Mestriner, C. Venturi, G. Longo, G. Sturniolo, Intestinal permeability test As a predictor of clinical course in Crohn's disease, Am. J. Gastroenterol. 94 (1999) 2956–2960, http://dx.doi.org/10.1111/j.1572-0241.1999.01444.x.

[52]

J. Wyatt, H. Vogelsang, W. Hübl, T. Waldhöer, H. Lochs, Intestinal permeability and the prediction of relapse in Crohn's disease, Lancet 341 (1993) 1437–1439, http://dx.doi.org/10.1016/0140-6736(93)90882-H.

[53]

J. Tibble, G. Sigthorsson, S. Bridger, M. Fagerhol, I. Bjarnason, Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease, Gastroenterology 119 (2000) 15–22, http://dx.doi.org/10.1053/gast.2000.8523.

[54]

I. Pierantonelli, G. Svegliati-Baroni, Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH, Transplantation 103 (2019) 1–13, http://dx.doi.org/10.1097/TP.0000000000002480.

[55]

P. Kwang-Il, K. Kwang-Youn, W.O. Tae, K. Du-Seock, K. Eung-Kyun, R.Y. Yong, S. Young-Kyo, M. Jin-Yeul, S. Pann-Ghill, Phospholipase Cγ1 links inflammation and tumorigenesis in colitis-associated cancer, Oncotarget 9 (2019) 5752–5763, http://dx.doi.org/10.18632/oncotarget.23430.

[56]

V. Stadlbauer, B. Leber, S. Lemesch, S. Trajanoski, M. Bashir, A. Horvath, M. Tawdrous, T. Stojakovic, G. Fauler, P. Fickert, C. Högenauer, I. Klymiuk, P. Stiegler, M. Lamprecht, T. Pieber, N. Tripolt, H. Sourij, Lactobacillus casei shirota supplementation does not restore gut microbiota composition and gut barrier in metabolic syndrome: a randomized pilot study, PLoS One 10 (2015), e0141399, http://dx.doi.org/10.1371/journal.pone.0141399.

[57]

M. Vazquez-Roque, M. Camilleri, T. Smyrk, J. Murray, J. O'Neill, P. Carlson, J. Lamsam, D. Eckert, D. Janzow, D. Burton, M. Ryks, D. Rhoten, A. Zinsmeister, Association of HLA-DQ gene with bowel transit, barrier function, and inflammation in irritable bowel syndrome with diarrhea, Am. J. Physiol. Gastrointest. Liver Physiol. 303 (2012) 1262–1269, http://dx.doi.org/10.1152/ajpgi.00294.2012.

[58]

C. Schmidt, Thinking from the gut, Nature 518 (2015) S12–S15.

[59]

B. Wang, M. Yao, L. Lv, Z. Ling, L. Lanjuan, The human microbiota in health and disease, Engineering 3 (2017) 71–82, http://dx.doi.org/10.1016/J.ENG.2017.01.008.

[60]
V. Norn, Emulsifiers in Food Technology, second edition, 2015, http://dx.doi.org/10.1002/9781118921265.
DOI
[61]

N.S. Neta, J.A. Teixeira, L.R. Rodrigues, Sugar ester surfactants: enzymatic synthesis and applications in food industry, Crit. Rev. Food Sci. Nutr. (2015), http://dx.doi.org/10.1080/10408398.2012.667461.

[62]

EFSA ANS Panel, Scientific Opinion on the refined exposure assessment of sucrose esters of fatty acids (E 473) from its use as a food additive, EFSA J. 16 (2018) 5087, http://dx.doi.org/10.2903/j.efsa.2018.5087.

[63]
M.E. Meezan E, D.J. Pillion, Absorption Enhancers for Drug Administration, 2006, doi: US2006/0045869A1.
[64]

Y. Mine, J.W. Zhang, Surfactants enhance the tight-junction permeability of food allergens in human intestinal epithelial Caco-2 cells, Int. Arch. Allergy Immunol. (2003), http://dx.doi.org/10.1159/000069009.

[65]

A. Glynn, A.M. Igra, S. Sand, N.G. Ilbäck, K.E. Hellenäs, J. Rosén, B. Aspenström-Fagerlund, Are additive effects of dietary surfactants on intestinal tight junction integrity an overlooked human health risk? – a mixture study on Caco-2 monolayers, Food Chem. Toxicol. (2017), http://dx.doi.org/10.1016/j.fct.2017.05.068.

[66]

T. Weangsripanaval, T. Moriyama, T. Kageura, T. Ogawa, T. Kawada, Dietary fat and an exogenous emulsifier increase the gastrointestinal absorption of a major soybean allergen, gly m bd 30K, in mice, J. Nutr. (2005).

[67]

C.L. Roberts, Å. V. Keita, S.H. Duncan, N. O'Kennedy, J.D. Söderholm, J.M. Rhodes, B.J. Campbell, Translocation of Crohn's disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers, Gut (2010), http://dx.doi.org/10.1136/gut.2009.195370.

[68]

National Toxicology Program, Toxicology and carcinogenesis studies of polysorbate 80 in F344/N rats and B6C3F1 mice, J. Chem. Inf. Model. (1992), http://dx.doi.org/10.1017/CBO9781107415324.004.

[69]

A.T.G.B. Chassaing, O. Koren, J.K. Goodrich, A.C. Poole, S. Srinivasan, R.E. Ley, Corrigendum: dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome, Nature 536 (2016) 238, http://dx.doi.org/10.1038/nature18000.

[70]

V. Delorme, R. Dhouib, S. Canaan, F. Fotiadu, F. Carrière, J.F. Cavalier, Effects of surfactants on lipase structure, activity, and inhibition, Pharm. Res. (2011), http://dx.doi.org/10.1007/s11095-010-0362-9.

[71]

C.A. Merian Nassra, Christine Bourgeois, Muriel Subirade, Patrick Sauvant, Oral administration of lipid oil-in-water emulsions performed with synthetic or protein-type emulsifiers differentially affects post-prandial triacylglycerolemia in rats, J. Physiol. Biochem. (2018), http://dx.doi.org/10.1007/s13105-018-0634-0.

[72]

Z. Jiang, M. Zhao, H. Zhang, Y. Li, M. Liu, F. Feng, Antimicrobial emulsifier–Glycerol monolaurate induces metabolic syndrome, gut microbiota dysbiosis, and systemic low-grade inflammation in low-fat diet fed mice, Mol. Nutr. Food Res. (2018), http://dx.doi.org/10.1002/mnfr.201700547.

[73]
Commission Regulation (EU) No 231/2012 of 9 March 2012 Laying Down Specifications for Food Additives Listed in Annexes Ⅱ and Ⅲ to Regulation (EC) No 1333/2008 of the European Parliament and of the Council, 2019 (n.d.) https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02012R0231-20180812&qid=1539973633300&from=HU.
[74]

B. Chassaing, T. Van De Wiele, J. De Bodt, M. Marzorati, A.T. Gewirtz, Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation, Gut (2017), http://dx.doi.org/10.1136/gutjnl-2016-313099.

[75]

E. Viennois, B. Chassaing, First victim, later aggressor: How the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers? Gut Microbes (2018), http://dx.doi.org/10.1080/19490976.2017.1421885.

[76]

E. Viennois, D. Merlin, A.T. Gewirtz, B. Chassaing, Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis, Cancer Res. (2017), http://dx.doi.org/10.1158/0008-5472.CAN-16-1359.

[77]
WHO IARC, Cancer Fact Sheets (n.d.), 2019 http://gco.iarc.fr/today/fact-sheets-cancers.
[78]

J.Y. Lock, T.L. Carlson, C.M. Wang, A. Chen, R.L. Carrier, Acute exposure to commonly ingested emulsifiers alters intestinal mucus structure and transport properties, Sci. Rep. (2018), http://dx.doi.org/10.1038/s41598-018-27957-2.

[79]

Y. Lu, Y.Y. Wang, N. Yang, D. Zhang, F.Y. Zhang, H.T. Gao, W.T. Rong, S.Q. Yu, Q. Xu, Food emulsifier polysorbate 80 increases intestinal absorption of Di-(2-Ethylhexyl) phthalate in rats, Toxicol. Sci. (2014), http://dx.doi.org/10.1093/toxsci/kfu055.

[80]

R. Xu, H.T. Gao, F. Zhu, W.X. Cao, Y.H.M. Yan, X. Zhou, Q. Xu, W.L. Ji, SPE-UPLC-MS/MS for the determination of phthalate monoesters in rats urine and its application to study the effects of food emulsifier on the bioavailability of priority controlling PAEs, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. (2016), http://dx.doi.org/10.1016/j.jchromb.2016.01.007.

[81]

H.T. Gao, R. Xu, W.X. Cao, Q.N. Di, R.X. Li, L. Lu, Q. Xu, S.Q. Yu, Combined effects of simultaneous exposure to six phthalates and emulsifier glycerol monosterate on male reproductive system in rats, Toxicol. Appl. Pharmacol. (2018), http://dx.doi.org/10.1016/j.taap.2018.01.013.

[82]

EFSA ANS Panel, Guidance for submission for food additive evaluations, EFSA J. 10 (2012) 2760, http://dx.doi.org/10.2903/j.efsa.2012.2760.

[83]
National Food Chain Safety Office, Safety Concerns of Citric Acid Esters on Mono- and Diglycerides Usage in Infant Formula and Formulas for Special Medical Purposes Intended for Infants, 2014, Submitted to WHO, https://apps.who.int/iris/bitstream/handle/10665/171781/9789240693982_eng.pdf;jsessionid=75D91B0CB23B6252820AA69F85BF1FE9?sequence=3.
[84]
JECFA (Joint FAO/WHO Expert Committee on Food Additives), Safety Evaluation of Certain Food Additives, 2015, WHO Food Addit. Ser. 70.
[85]
EFSA, Annual Report of the Emerging Risks Exchange Network 2014, 2015, http://dx.doi.org/10.2903/sp.efsa.2015.EN-839.
DOI
[86]
Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives, 2008 https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02008R1333-20180812&qid=1539977860253&from=HU.
[87]

A. Lerner, P. Jeremias, T. Matthias, The world incidence and prevalence of autoimmune diseases is increasing, Int. J. Celiac Dis. (2016), http://dx.doi.org/10.12691/ijcd-3-4-8.

[88]

R. Sigall-Boneh, A. Levine, M. Lomer, N. Wierdsma, P. Allan, G. Fiorino, S. Gatti, D. Jonkers, J. Kierkus, K.H. Katsanos, S. Melgar, E.S. Yuksel, K. Whelan, E. Wine, K. Gerasimidis, Research gaps in diet and nutrition in inflammatory bowel disease. A topical review by D-ECCO working group [Dietitians of ECCO], J. Crohns Colitis (2017), http://dx.doi.org/10.1093/ecco-jcc/jjx109.

[89]

S. Maher, J. Heade, F. McCartney, S. Waters, S.B. Bleiel, D.J. Brayden, Effects of surfactant-based permeation enhancers on mannitol permeability, histology, and electrogenic ion transport responses in excised rat colonic mucosae, Int. J. Pharm. (2018), http://dx.doi.org/10.1016/j.ijpharm.2018.01.008.

[90]

R.C. Anderson, J.E. Dalziel, P.K. Gopal, The role of intestinal barrier function in early life in the development of colitis, Intechopen. (2009), http://dx.doi.org/10.5772/25753.

[91]

J. Söderholm, G. Olaison, K. Peterson, L. Franzén, T. Lindmark, M. Wirén, C. Tagesson, R. Sjödahl, Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's, Gut 50 (2002) 307–313.

[92]
Jim Smith, Food Additive User's Handbook, Springer, 1991.
DOI
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 October 2018
Revised: 12 February 2019
Accepted: 08 April 2019
Published: 09 April 2019
Issue date: June 2019

Copyright

© 2019 “Society information”.

Acknowledgements

Acknowledgements

We are grateful to Sándor Németh, Anita Maczó, Andrea Zentai and András Csáki for their valuable suggestions.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return