Journal Home > Volume 8 , Issue 2

Parkinson's disease (PD) is a slowly progressive neurodegenerative disorder with motor and non-motor signs, which begins long before the diagnosis can be made. Pharmacotherapy with dopaminergic drugs is the mainstay of PD therapy. There is no currently available cure or disease-modifying treatment. Diet and various foods have been proposed as possible risk factors for PD. Nutritional supplementation with omega-3 fatty acids, vitamin D, B vitamins, and coenzyme Q may have potential in the management of PD. In addition, several strategies could possibly lead to the development of medical foods in PD. For example, ketogenic diets may have effects complementary to pharmacotherapy. Gut microbial dysbiosis and altered microbial metabolites found in PD may lead to chronic low-grade inflammation in gut and brain. Interventions targeting gut microbiota, such as the supplementation of probiotics, may provide novel approaches to PD in regard to both symptomatic treatment and disease modification. High quality randomized controlled trials need to be conducted in order to evaluate whether these food-based strategies have symptomatic efficacy or the potential to delay the progression of PD.


menu
Abstract
Full text
Outline
About this article

Diet and medical foods in Parkinson's disease

Show Author's information Klaus W. Langea( )Yukiko NakamuraaNing ChenbJianjun GuocShigehiko KanayadKatharina M. LangeeShiming Lif
Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
China Institute of Sport Science, Beijing, China
Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
Department of Psychology, University of Winchester, Winchester, United Kingdom
Department of Food Science, Rutgers University, New Brunswick, NJ, USA

Abstract

Parkinson's disease (PD) is a slowly progressive neurodegenerative disorder with motor and non-motor signs, which begins long before the diagnosis can be made. Pharmacotherapy with dopaminergic drugs is the mainstay of PD therapy. There is no currently available cure or disease-modifying treatment. Diet and various foods have been proposed as possible risk factors for PD. Nutritional supplementation with omega-3 fatty acids, vitamin D, B vitamins, and coenzyme Q may have potential in the management of PD. In addition, several strategies could possibly lead to the development of medical foods in PD. For example, ketogenic diets may have effects complementary to pharmacotherapy. Gut microbial dysbiosis and altered microbial metabolites found in PD may lead to chronic low-grade inflammation in gut and brain. Interventions targeting gut microbiota, such as the supplementation of probiotics, may provide novel approaches to PD in regard to both symptomatic treatment and disease modification. High quality randomized controlled trials need to be conducted in order to evaluate whether these food-based strategies have symptomatic efficacy or the potential to delay the progression of PD.

Keywords: Prevention, Diet, Probiotics, Parkinson's disease, Ketogenic diet, Medical food

References(236)

[1]

E.R. Dorsey, R. Constantinescu, J.P. Thompson, K.M. Biglan, R.G. Holloway, K. Kieburtz, F.J. Marshall, B.M. Ravina, G. Schifitto, A. Siderowf, C.M. Tanner, Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030, Neurology 68 (2007) 384-386.

[2]

E.C. Hirsch, A.M. Graybiel, Y. Agid, Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease, Nature 334 (1988) 345-348.

[3]
J. Parkinson, An Essay on The Shaking Palsy, Sherwood, Neely and Jones, London, 1817.
[4]

C.D. Marsden, Parkinson's disease, Lancet 335 (1990) 948-952.

[5]

K.W. Lange, T.W. Robbins, C.D. Marsden, M. James, A.M. Owen, G.M. Paul, L-Dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction, Psychopharmacology 107 (1992) 394-404.

[6]

A.M. Owen, M. James, P.N. Leigh, B.A. Summers, C.D. Marsden, N.P. Quinn, K.W. Lange, T.W. Robbins, Fronto-striatal cognitive deficits at different stages of Parkinson's disease, Brain 115 (1992) 1727-1751.

[7]

K.W. Lange, G.M. Paul, M. Naumann, W. Gsell, Dopaminergic effects on cognitive performance in patients with Parkinson's disease, J. Neural Transm. Suppl. 46 (1995) 423-432.

[8]

S.S. O'Sullivan, D.R. Williams, D.A. Gallagher, L.A. Massey, L. Silveira-Moriyama, A.J. Lees, Non motor symptoms as presenting complaints in Parkinson's disease: a clinicopathological study, Mov. Disord. 23 (2008) 101-106.

[9]

K.R. Chaudhuri, A.H.V. Schapira, Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment, Lancet Neurol. 8 (2009) 464-474.

[10]

R. Savica, W.A. Rocca, J.E. Ahlskog, When does Parkinson disease start? Arch. Neurol. 67 (2010) 798-801.

[11]

R.B. Postuma, D. Aarsland, P. Barone, D.J. Burn, C.H. Hawkes, W. Oertel, T. Ziemssen, Identifying prodromal Parkinson's disease: pre-motor disorders in Parkinson's disease, Mov. Disord. 27 (2012) 617-626.

[12]

H. Braak, U. Rüb, W.P. Gai, K. Del Tredici, Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen, J. Neural Transm. 110 (2003), 517–S36.

[13]

M.C. de Rijk, L.I. Launer, K. Berger, M.M. Breteler, J.F. Dartigues, M. Baldereschi, L. Fratiglioni, A. Lobo, J. Martinez-Lage, C. Trenkwalder, A. Hofman, Prevalence of Parkinson's disease in Europe: a collaborative study of population-based cohorts, Neurology 54 (Suppl. 5) (2000) S21-S23.

[14]

R. Inzelberg, E. Schechtman, D. Paleacu, Onset age of Parkinson disease, Am. J. Med. Genet. 111 (2002) 459-460.

[15]

U.B. Muthane, H.S. Swamy, P. Satishchandra, M.N. Subhash, S. Rao, D. Subbakrishna, Early onset Parkinson's disease: are juvenile- and young-onset different? Mov. Disord. 9 (1994) 539-544.

[16]

L.I. Golbe, Young-onset Parkinson's disease: a clinical review, Neurology 41 (1991) 168-173.

[17]

J.A. Obeso, M.C. Rodriguez-Oroz, C.G. Goetz, C. Marin, J.H. Kordower, M. Rodriguez, E.C. Hirsch, M. Farrer, A.H. Schapira, G. Halliday, Missing pieces in the Parkinson's disease puzzle, Nat. Med. 16 (2010) 653-661.

[18]

B. Halliwell, Reactive oxygen species and the central nervous system, J. Neurochem. 59 (1992) 1609-1623.

[19]

E. Sofic, K.W. Lange, K. Jellinger, P. Riederer, Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease, Neurosci. Lett. 142 (1992) 128-130.

[20]

S. Bharath, M. Hsu, D. Kaur, S. Rajagopalan, J.K. Andersen, Glutathione, iron and Parkinson's disease, Biochem. Pharmacol. 64 (2002) 1037-1048.

[21]

M. Deleidi, T. Gasser, The role of inflammation in sporadic and familial Parkinson's disease, Cell. Mol. Life Sci. 70 (2013) 4259-4273.

[22]

L.M. de Lau, M.M. Breteler, Epidemiology of Parkinson's disease, Lancet Neurol. 5 (2006) 525-535.

[23]

K. Wirdefeldt, H.O. Adami, P. Cole, D. Trichopoulos, J. Mandel, Epidemiology and etiology of Parkinson's disease: a review of the evidence, Eur. J. Epidemiol. 26 (Suppl. 1) (2011) S1-S58.

[24]

L. Fleming, J.B. Mann, J. Bean, T. Briggle, J.R. Sanchez-Ramos, Parkinson's disease and brain levels of organochlorine pesticides, Ann. Neurol. 36 (1994) 100-103.

[25]

F.M. Corrigan, C.L. Wienburg, R.F. Shore, S.E. Daniel, D. Mann, Organochlorine insecticides in substantia nigra in Parkinson's disease, J. Toxicol. Environ. Health A 59 (2000) 229-234.

[26]

S. Costello, M. Cockburn, J. Bronstein, X. Zhang, B. Ritz, Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California, Am. J. Epidemiol. 169 (2009) 919-926.

[27]

C.M. Tanner, F. Kamel, G.W. Ross, J.A. Hoppin, S.M. Goldman, M. Korell, C. Marras, G.S. Bhudhikanok, M. Kasten, A.R. Chade, K. Comyns, M.B. Richards, C. Meng, B. Priestley, H.H. Fernandez, F. Cambi, D.M. Umbach, A. Blair, D.P. Sandler, J.W. Langston, Rotenone, paraquat, and Parkinson's disease, Environ. Health Perspect. 119 (2011) 866-872.

[28]

G. van Maele-Fabry, P. Hoet, F. Vilain, D. Lison, Occupational exposure to pesticides and Parkinson's disease: a systematic review and meta-analysis of cohort studies, Environ. Int. 46 (2012) 30-43.

[29]

H. Braak, K. Del Tredici, Potential pathways of abnormal tau and α-synuclein dissemination in sporadic Alzheimer's and Parkinson's diseases, Cold Spring Harb. Perspect. Biol. 8 (2016), pii: a023630.

[30]

K.L. Adams-Carr, J.P. Bestwick, S. Shribman, A. Lees, A. Schrag, A.J. Noyce, Constipation preceding Parkinson's disease: a systematic review and meta-analysis, J. Neurol. Neurosurg. Psychiatry 87 (2016) 710-716.

[31]

A. Mukherjee, A. Biswas, S.K. Das, Gut dysfunction in Parkinson's disease, World J. Gastroenterol. 22 (2016) 5742-5752.

[32]

E. Svensson, E. Horváth-Puhó, R.W. Thomsen, J.C. Djurhuus, L. Pedersen, P. Borghammer, H.T. Sørensen, Vagotomy and subsequent risk of Parkinson's disease, Ann. Neurol. 78 (2015) 522-529.

[33]

H. Reichmann, Modern treatment in Parkinson's disease, a personal approach, J. Neural Transm. 123 (2016) 73-80.

[34]

R. Dhall, D.L. Kreitzman, Advances in levodopa therapy for Parkinson disease: review of RYTARY (carbidopa and levodopa) clinical efficacy and safety, Neurology 86 (14 Suppl. 1) (2016) S13-S24.

[35]

C.D. Binde, I.F. Tvete, J. Gåsemyr, B. Natvig, M. Klemp, A multiple treatment comparison meta-analysis of monoamine oxidase type B inhibitors for Parkinson's disease, Br. J. Clin. Pharmacol. 84 (2018) 1917-1927.

[36]

K.W. Lange, Clinical pharmacology of dopamine agonists in Parkinson's disease, Drugs Aging 13 (1998) 381-389.

[37]

S. Fahn, The history of dopamine and levodopa in the treatment of Parkinson's disease, Mov. Disord. 23 (Suppl. 3) (2008) S497-S508.

[38]

M. Yamamoto, A.H.V. Schapira, Dopamine agonists in Parkinson's disease, Exp. Rev. Neurother. 8 (2008) 671-677.

[39]

K. Jellinger, Neuropathology of sporadic Parkinson's disease: evaluation and changes of concepts, Mov. Disord. 27 (2012) 8-30.

[40]

K.W. Lange, F.R. Wells, M.N. Rossor, P. Jenner, C.D. Marsden, Brain muscarinic receptors in Alzheimer's and Parkinson's diseases, Lancet 334 (1989) 1279.

[41]

K.W. Lange, F.R. Wells, M.N. Rossor, P. Jenner, C.D. Marsden, Cortical nicotinic receptors in Alzheimer's disease and Parkinson's disease, J. Neurol. Neurosurg. Psychiatry 54 (1991) 373-374.

[42]

P. Riederer, K.W. Lange, J. Kornhuber, W. Danielczyk, Glutamatergic-dopaminergic balance in the brain. Its importance in motor disorders and schizophrenia, Arzneimittelforschung 42 (1992) 265-268.

[43]

K.W. Lange, F.R. Wells, P. Jenner, C.D. Marsden, Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson's disease, J. Neurochem. 60 (1993) 197-203.

[44]

K.W. Lange, J. Kornhuber, P. Riederer, Dopamine/glutamate interactions in Parkinson's disease, Neurosci. Biobehav. Rev. 21 (1997) 393-400.

[45]

J.M. Fearnley, A.J. Lees, Ageing and Parkinson's disease: substantia nigra regional selectivity, Brain 114 (1991) 2283-2301.

[46]

W.C. Koller, When does Parkinson's disease begin? Neurology 42 (Suppl. 4) (1992) 27-31.

[47]

M.A. Hernan, B. Takkouche, F. Caamaño -Isorna, J.J. Gestal-Otero, A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson's disease, Ann. Neurol. 52 (2002) 276-284.

[48]

A. Gaenslen, T. Gasser, D. Berg, Nutrition and the risk for Parkinson's disease: review of the literature, J. Neural Transm. 115 (2008) 703-713.

[49]

D.B. Calne, A. Eisen, E. McGeer, P. Spencer, Alzheimer's disease Parkinson's disease, and motoneurone disease: abiotrophic interaction between ageing and environment?, Lancet 2 (1986) 1067-1070.

[50]
P.A. Cox, O.W. Sacks (2002) Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam, Neurology 58 (2002) 956-959.
DOI
[51]

A. Wang, Y. Lin, Y. Wu, D. Zhang, Macronutrients intake and risk of Parkinson's disease: a meta-analysis, Geriatr. Gerontol. Int. 15 (2015) 606-616.

[52]

L. Ishihara, C. Brayne, A systematic review of nutritional risk factors of Parkinson's disease, Nutr. Res. Rev. 18 (2005) 259-282.

[53]

K. Sääksjärvi, P. Knekt, A. Lundqvist, S. Männistö, M. Heliövaara, H. Rissanen, R. Järvinen, A cohort study on diet and the risk of Parkinson's disease: the role of food groups and diet quality, Br. J. Nutr. 109 (2013) 329-337.

[54]

W. Hellenbrand, H. Boeing, B.P. Robra, A. Seidler, P. Vieregge, P. Nischan, J. Joerg, W.H. Oertel, E. Schneider, G. Ulm, Diet and Parkinson's disease. Ⅱ: a possible role for the past intake of specific nutrients. Results from a self-administered food frequency questionnaire in a case–control study, Neurology 47 (1996) 644-650.

[55]

H. Chen, S.M. Zhang, M.A. Hernán, W.C. Willett, A. Ascherio, Diet and Parkinson's disease: a potential role of dairy products in men, Ann. Neurol. 52 (2002) 793-801.

[56]

L.K. Mischley, R.C. Lau, R.D. Bennett, Role of diet and nutritional supplements in Parkinson's disease progression, Oxid. Med. Cell Longev. 2017 (2017) 6405278.

[57]

M. Park, G.W. Ross, H. Petrovitch, L.R. White, K.H. Masaki, J.S. Nelson, C.M. Tanner, J.D. Curb, P.L. Blanchette, R.D. Abbott, Consumption of milk and calcium in midlife and the future risk of Parkinson disease, Neurology 64 (2005) 1047-1051.

[58]

H. Chen, E. O'Reilly, M.L. McCullough, C. Rodriguez, M.A. Schwarzschild, E.E. Calle, M.J. Thun, A. Ascherio, Consumption of dairy products and risk of Parkinson's disease, Am. J. Epidemiol. 165 (2007) 998-1006.

[59]

A. Kyrozis, A. Ghika, P. Stathopoulos, D. Vassilopoulos, D. Trichopoulos, A. Trichopoulou, Dietary and lifestyle variables in relation to incidence of Parkinson's disease in Greece, Eur. J. Epidemiol. 28 (2013) 67-77.

[60]

K.C. Hughes, X. Gao, I.Y. Kim, M. Wang, M.G. Weisskopf, M.A. Schwarzschild, A. Ascherio, Intake of dairy foods and risk of Parkinson disease, Neurology 89 (2017) 46-52.

[61]

W. Jiang, C. Ju, H. Jiang, D. Zhang, Dairy foods intake and risk of Parkinson's disease: a dose–response meta-analysis of prospective cohort studies, Eur. J. Epidemiol. 29 (2014) 613-619.

[62]

A. Priyadarshi, S.A. Khuder, E.A. Schaub, S. Shrivastava, A meta-analysis of Parkinson's disease and exposure to pesticides, Neurotoxicology 21 (2000) 435-440.

[63]

M.G. Weisskopf, P. Knekt, E.J. O'Reilly, J. Lyytinen, A. Reunanen, F. Laden, L. Altshul, A. Ascherio, Persistent organochlorine pesticides in serum and risk of Parkinson disease, Neurology 74 (2010) 1055-1061.

[64]

J.W. Davis, A. Grandinetti, C.I. Waslien, G.W. Ross, L.R. White, D.M. Morens, Observations on serum uric acid levels and the risk of idiopathic Parkinson's disease, Am. J. Epidemiol. 144 (1996) 480-484.

[65]

L.M. de Lau, P.J. Koudstaal, A. Hofman, M.M. Breteler, Serum uric acid levels and the risk of Parkinson disease, Ann. Neurol. 58 (2005) 797-800.

[66]

M.G. Weisskopf, E. O'Reilly, H. Chen, M.A. Schwarzschild, A. Ascherio, Plasma urate and risk of Parkinson's disease, Am. J. Epidemiol. 166 (2007) 561-567.

[67]

X. Chen, G. Wu, M.A. Schwarzschild, Urate in Parkinson's disease: more than a biomarker? Curr. Neurol. Neurosci. Rep. 12 (2012) 367-375.

[68]

C. Shen, Y. Guo, W. Luo, C. Lin, M. Ding, Serum urate and the risk of Parkinson's disease: results from a meta-analysis, Can. J. Neurol. Sci. 40 (2013) 73-79.

[69]

X. Gao, E.J. O'Reilly, M.A. Schwarzschild, A. Ascherio, Prospective study of plasma urate and risk of Parkinson disease in men and women, Neurology 86 (2016) 520-526.

[70]

D.R. Garrel, M. Verdy, C. PetitClerc, C. Martin, D. Brulé, P. Hamet, Milk- and soy-protein ingestion: acute effect on serum uric acid concentration, Am. J. Clin. Nutr. 53 (1991) 665-669.

[71]

N. Dalbeth, S. Wong, G.D. Gamble, A. Horne, B. Mason, B. Pool, L. Fairbanks, F.M. McQueen, J. Cornish, I.R. Reid, K. Palmano, Acute effect of milk on serum urate concentrations: a randomised controlled crossover trial, Ann. Rheum. Dis. 69 (2010) 1677-1682.

[72]

H.K. Choi, K. Atkinson, E.W. Karlson, W. Willett, G. Curhan, Purine-rich foods, dairy and protein intake, and the risk of gout in men, N. Engl. J. Med. 350 (2004) 1093-1103.

[73]

R.D. Abbott, G.W. Ross, H. Petrovitch, K.H. Masaki, L.J. Launer, J.S. Nelson, L.R. White, C.M. Tanner, Midlife milk consumption and substantia nigra neuron density at death, Neurology 86 (2016) 512-519.

[74]

Y. Gu, J.A. Luchsinger, Y. Stern, N. Scarmeas, Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer's disease, J. Alzheimers Dis. 22 (2010) 483-492.

[75]

K.W. Lange, J. Guo, S. Kanaya, K.M. Lange, Y. Nakamura, S. Li, Mediterranean diet and Alzheimer's disease, Mov. Nutr. Health Dis. 3 (2019) 1.

[76]

X. Gao, H. Chen, T.T. Fung, G. Logroscino, M.A. Schwarzschild, F.B. Hu, A. Ascherio, Prospective study of dietary pattern and risk of Parkinson disease, Am. J. Clin. Nutr. 86 (2007) 1486-1494.

[77]

R.N. Alcalay, Y. Gu, H. Mejia-Santana, L. Cote, K.S. Marder, N. Scarmeas, The association between Mediterranean diet adherence and Parkinson's disease, Mov. Disord. 27 (2012) 771-774.

[78]

M.I. Maraki, M. Yannakoulia, M. Stamelou, L. Stefanis, G. Xiromerisiou, M.H. Kosmidis, E. Dardiotis, G.M. Hadjigeorgiou, P. Sakka, C.A. Anastasiou, E. Simopoulou, N. Scarmeas, Mediterranean diet adherence is related to reduced probability of prodromal Parkinson's disease, Mov. Disord. 34 (2019) 48-57.

[79]

J. Chao, Y. Leung, M. Wang, R.C.C. Chang, Nutraceuticals and their preventive or potential therapeutic value in Parkinson's disease, Nutr. Rev. 70 (2012) 373-386.

[80]

N.G. Bazan, Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection, Mol. Aspects Med. 64 (2018) 18-33.

[81]

A. Ticinesi, T. Meschi, F. Lauretani, G. Felis, F. Franchi, C. Pedrolli, M. Barichella, G. Benati, S. Di Nuzzo, G.P. Ceda, M. Maggio, Nutrition and inflammation in older individuals: focus on vitamin D, n-3 polyunsaturated fatty acids and whey proteins, Nutrients 8 (2016) 186.

[82]

E.C. Hirsch, S. Hunot, Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 8 (2009) 382-397.

[83]

M.G. Tansey, M.S. Goldberg, Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention, Neurobiol. Dis. 37 (2010) 510-518.

[84]

P.C. Calder, Polyunsaturated fatty acids and inflammation, Prostaglandins Leukot. Essent. Fatty Acids 75 (2006) 197-202.

[85]

S.K. Orr, R.P. Bazinet, The emerging role of docosahexaenoic acid in neuroinflammation, Curr. Opin. Investig. Drugs 9 (2008) 735-743.

[86]

S. Hong, K. Gronert, P.R. Devchand, R.L. Moussignac, C.N. Serhan, Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation, J. Biol. Chem. 278 (2003) 14677-14687.

[87]

N.G. Bazan, Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress, Brain Pathol. 15 (2005) 159-166.

[88]

M. Mogi, A. Togari, T. Kondo, Y. Mizuno, O. Komure, S. Kuno, H. Ichinose, T. Nagatsu, Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease, Neurosci. Lett. 270 (1999) 45-48.

[89]

K. Parain, M.G. Murer, Q. Yan, B. Faucheux, Y. Agid, E. Hirsch, R. Raisman-Vozari, Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra, Neuroreport 10 (1999) 557-561.

[90]

A. Lapillonne, S.D. Clarke, W.C. Heird, Polyunsaturated fatty acids and gene expression, Curr. Opin. Clin. Nutr. Metab. Care 7 (2004) 151-156.

[91]

C. Alves da Costa, F. Checler, Apoptosis in Parkinson's disease: is p53 the missing link between genetic and sporadic Parkinsonism? Cell. Signal. 23 (2011) 963-968.

[92]

C. Julien, L. Berthiaume, A. Hadj-Tahar, A.H. Rajput, P.J. Bédard, T. Di Paolo, P. Julien, F. Calon, Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys, Neurochem. Int. 48 (2006) 404-414.

[93]

F. Calon, G. Cole, Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies, Prostaglandins Leukot. Essent. Fatty Acids 77 (2007) 287-293.

[94]

L.M. de Lau, M. Bornebroek, J.C. Witteman, A. Hofman, P.J. Koudstaal, M.M. Breteler, Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study, Neurology 64 (2005) 2040-2045.

[95]

M. Taghizadeh, O.R. Tamtaji, E. Dadgostar, R. Daneshvar Kakhaki, F. Bahmani, J. Abolhassani, M.H. Aarabi, E. Kouchaki, M.R. Memarzadeh, Z. Asemi, The effects of omega-3 fatty acids and vitamin E co-supplementation on clinical and metabolic status in patients with Parkinson's disease: a randomized, double-blind, placebo-controlled trial, Neurochem. Int. 108 (2017) 183-189.

[96]

M. Bousquet, F. Calon, F. Cicchetti, Impact of ω-3 fatty acids in Parkinson's disease, Ageing Res. Rev. 10 (2011) 453-463.

[97]

C.W. Olanow, O. Rascol, R. Hauser, P.D. Feigin, J. Jankovic, A. Lang, W. Langston, E. Melamed, W. Poewe, F. Stocchi, E. Tolosa, A double-blind, delayed-start trial of rasagiline in Parkinson's disease, N. Engl. J. Med. 361 (2009) 1268-1278.

[98]

N. Collins, A.P. Tighe, S.A. Brunton, P.M. Kris-Etherton, Differences between dietary supplement and prescription drug omega-3 fatty acid formulations: a legislative and regulatory perspective, J. Am. Coll. Nutr. 27 (2008) 659-666.

[99]

J.P. Kesby, D.W. Eyles, T.H. Burne, J.J. McGrath, The effects of vitamin D on brain development and adult brain function, Mol. Cell Endocrinol. 347 (2011) 121-127.

[100]

D.W. Eyles, T.H.J. Burne, J.J. McGrath, Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease, Front. Neuroendocrinol. 34 (2013) 47-64.

[101]

A.K. Yeshokumar, D. Saylor, M.D. Kornberg, E.M. Mowry, Evidence for the importance of vitamin D status in neurologic conditions, Curr. Treat. Options Neurol. 17 (2015) 51.

[102]

D.W. Eyles, S. Smith, R. Kinobe, M. Hewison, J.J. McGrath, Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain, J. Chem. Neuroanat. 29 (2005) 21-30.

[103]

G.W. Ross, H. Petrovitch, R.D. Abbott, Serum vitamin D and risk of Parkinson's disease, Mov. Disord. 31 (2016) 933-935.

[104]

X. Luo, R. Ou, R. Dutta, Y. Tian, H. Xiong, H. Shang, Association between serum vitamin D levels and Parkinson's disease: a systematic review and meta-analysis, Front. Neurol. 9 (2018) 909.

[105]

M. Suzuki, M. Yoshioka, M. Hashimoto, M. Murakami, K. Kawasaki, M. Noya, D. Takahashi, M. Urashima, 25-Hydroxyvitamin D, vitamin D receptor gene polymorphisms, and severity of Parkinson's disease, Mov. Disord. 27 (2012) 264-271.

[106]

Z. Lv, H. Qi, L. Wang, X. Fan, F. Han, H. Wang, S. Bi, Vitamin D status and Parkinson's disease: a systematic review and meta-analysis, Neurol. Sci. 35 (2014) 1723-1730.

[107]

P. Knekt, A. Kilkkinen, H. Rissanen, J. Marniemi, K. Sääksjärvi, M. Heliövaara, Serum vitamin D and the risk of Parkinson disease, Arch. Neurol. 67 (2010) 808-811.

[108]

S. Shrestha, P. Lutsey, A. Alonso, X. Huang, T. Mosley, H. Chen, Serum 25-hydroxyvitamin D concentrations in Mid-adulthood and Parkinson's disease risk, Mov. Disord. 31 (2016) 972-978.

[109]

M. Suzuki, M. Yoshioka, M. Hashimoto, M. Murakami, M. Noya, D. Takahashi, M. Urashima, Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease, Am. J. Clin. Nutr. 97 (2013) 1004-1013.

[110]

L.M. Rimmelzwaan, N.M. van Schoor, H.W. Paul Lips, E.M.W. Berendse, Eekhoff, Systematic review of the relationship between vitamin D and Parkinson's disease, J. Parkinsons Dis. 6 (2016) 29-37.

[111]

E. Reynolds, Vitamin B12, folic acid, and the nervous system, Lancet Neurol. 5 (2006) 949-960.

[112]

N. Kumar, Neurologic presentations of nutritional deficiencies, Neurol. Clin. 28 (2010) 107-170.

[113]

G. Sechi, E. Sechi, C. Fois, N. Kumar, Advances in clinical determinants and neurological manifestations of B vitamin deficiency in adults, Nutr. Rev. 2016 (2016) 281-300.

[114]

W. Kuhn, R. Roebroek, H. Blom, D. van Oppenraaij, T. Müller, Hyperhomocysteinaemia in Parkinson's disease, J. Neurol. 245 (1998) 811-812.

[115]

S. Seshadri, A. Beiser, J. Selhub, P.F. Jacques, I.H. Rosenberg, R.B. D'Agostino, P.W. Wilson, P.A. Wolf, Plasma homocysteine as a risk factor for dementia and Alzheimer's disease, N. Engl. J. Med. 346 (2002) 476-483.

[116]

R.B. Postuma, A.E. Lang, Homocysteine and levodopa: should Parkinson disease patients receive preventative therapy? Neurology 63 (2004) 886-891.

[117]

Z. Todorović, E. Dzoljić, I. Novaković, D. Mirković, R. Stojanović, Z. Nesić, M. Krajinović, M. Prostran, V. Kostić, Homocysteine serum levels and MTHFR C677T genotype in patients with Parkinson's disease, with and without levodopa therapy, J. Neurol. Sci. 248 (2006) 56-61.

[118]

M.C. Rodriguez-Oroz, P.M. Lage, J. Sanchez-Mut, I. Lamet, J. Pagonabarraga, J.B. Toledo, D. García-Garcia, P. Clavero, L. Samaranch, C. Irurzun, J.M. Matsubara, J. Irigoien, E. Bescos, J. Kulisevsky, J. Pérez-Tur, J.A. Obeso, Homocysteine and cognitive impairment in Parkinson's disease: a biochemical, neuroimaging, and genetic study, Mov. Disord. 24 (2009) 1437-1444.

[119]

W. Duan, B. Ladenheim, R.G. Cutler, I.I. Kruman, J.L. Cadet, M.P. Mattson, Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease, J. Neurochem. 80 (2002) 101-110.

[120]

I.I. Kruman, C. Culmsee, S.L. Chan, Y. Kruman, Z. Guo, L. Penix, M.P. Mattson, Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity, J. Neurosci. 20 (2000) 6920-6926.

[121]

S.A. Lipton, W.K. Kim, Y.B. Choi, S. Kumar, D.M. D'Emilia, P.V. Rayudu, D.R. Arnelle, J.S. Stamler, Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor, Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 5923-5928.

[122]

H. Baker, O. Frank, T. Chen, S. Feingold, B. DeAngelis, E. Baker, Vitamin content of some normal human brain segments, J. Neurosci. Res. 11 (1984) 419-435.

[123]

H. Yamashita, Y.X. Zhang, S. Nakamura, The effects of thiamin and its phosphate esters on dopamine release in the rat striatum, Neurosci. Lett. 158 (1993) 229-231.

[124]

q. Luong, L.T.H. Nguyen, The beneficial role of thiamine in Parkinson disease, CNS Neurosci. Ther. 19 (2013) 461-468.

[125]

L.M. de Lau, P.J. Koudstaal, J.C. Witteman, A. Hofman, M.M. Breteler, Dietary folate, vitamin B12, and vitamin B6 and the risk of Parkinson disease, Neurology 67 (2006) 315-318.

[126]

L. Shen, Associations between B vitamins and Parkinson's disease, Nutrients 7 (2015) 7197-7208.

[127]

A. Costantini, M.I. Pala, E. Grossi, S. Mondonico, L.E. Cardelli, C. Jenner, S. Proietti, M. Colangeli, R. Fancellu, Long-term treatment with high-dose thiamine in Parkinson disease: an open-label pilot study, J. Altern. Complement. Med. 21 (2015) 740-747.

[128]

A. Costantini, R. Fancellu, An open-label pilot study with high-dose thiamine in Parkinson's disease, Neural Regen. Res. 11 (2016) 406-407.

[129]

C.W. Olanow, A radical hypothesis for neurodegeneration, Trends Neurosci. 16 (1993) 439-444.

[130]

M.F. Beal, Mitochondria, oxidative damage, and inflammation in Parkinson's disease, Ann. N. Y. Acad. Sci. 991 (2003) 120-131.

[131]

H. Sies, W. Stahl, A.R. Sundquist, Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids, Ann. N. Y. Acad. Sci. 669 (1992) 7-20.

[132]

C.R. Burkhardt, H.K. Weber, Parkinson's disease: a chronic, low-grade antioxidant deficiency? Med. Hypotheses 43 (1994) 111-114.

[133]

A. Takeda, O.P. Nyssen, A. Syed, E. Jansen, B. Bueno-de-Mesquita, V. Gallo, Vitamin A and carotenoids and the risk of Parkinson's disease: a systematic review and meta-analysis, Neuroepidemiology 42 (2014) 25-38.

[134]

K.C. Hughes, X. Gao, I.Y. Kim, E. Rimm, M. Wang, M.G. Weisskopf, M.A. Schwarzschild, A. Ascherio, Intake of antioxidant vitamins and risk of Parkinson's disease, Mov. Disord. 31 (2016) 1909-1914.

[135]

J.A. Joseph, B. Shukitt-Hale, G. Casadesus, Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds, Am. J. Clin. Nutr. 81 (2005), 313S–316S.

[136]

K.W. Lange, Red wine, resveratrol, and Alzheimer's disease, Mov. Nutr. Health Dis. 2 (2018) 31-38.

[137]

K.W. Lange, S. Li, Resveratrol, pterostilbene and dementia, BioFactors 44 (2018) 83-90.

[138]
A.S. Darvesh, M. McClure, P. Sadana, C. Paxos, W.J. Geldenhuys, J.D. Lambert, T.M. Haqqi, J.R. Richardson, Neuroprotective properties of dietary polyphenols in Parkinson's disease, in: T. Farooqui, A.A. Farooqui (Eds.), Neuroprotective Effects of Phytochemicals in Neurological Disorders, Wiley, 2017, pp. 243–263.
DOI
[139]

M. Kujawska, J. Jodynis-Liebert, Polyphenols in Parkinson's disease: a systematic review of in vivo studies, Nutrients 10 (2018) 642.

[140]

X. Gao, A. Cassidy, M.A. Schwarzschild, E.B. Rimm, A. Ascherio, Habitual intake of dietary flavonoids and risk of Parkinson disease, Neurology 78 (2012) 1138-1145.

[141]

D. Dutta, K.P. Mohanakumar, Tea and Parkinson's disease: constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits, Neurochem. Int. 89 (2015) 181-190.

[142]

D.K. Chan, G.D. Mellick, W.T. Hung, J. Woo, Genetic and environmental risk factors and their interactions for Parkinson's disease in a Chinese population, J. Clin. Neurosci. 10 (2003) 313-315.

[143]

H. Checkoway, K. Powers, T. Smith-Weller, G.M. Franklin, , P.D. Swanson, Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake, Am. J. Epidemiol. 155 (2002) 732-738.

[144]

E.K. Tan, C. Tan, S.M. Fook-Chong, S.Y. Lum, A. Chai, H. Chung, H. Shen, Y. Zhao, M.L. Teoh, Y. Yih, R. Pavanni, V.R. Chandran, M.C. Wong, Dose-dependent protective effect of coffee, tea, and smoking in Parkinson's disease: a study in ethnic Chinese, J. Neurol. Sci. 216 (2003) 163-167.

[145]

L.C. Tan, W.P. Koh, J.M. Yuan, R. Wang, W.L. Au, J.H. Tan, E.K. Tan, M.C. Yu, Differential effects of black versus green tea on risk of Parkinson's disease in the Singapore Chinese Health Study, Am. J. Epidemiol. 167 (2008) 553-560.

[146]

B. Kandinov, N. Giladi, A.D. Korczyn, Smoking and tea consumption delay onset of Parkinson's disease, Parkinsonism Relat. Disord. 15 (2009) 41-46.

[147]

F.J. Li, H.F. Ji, L. Shen, A meta-analysis of tea drinking and risk of Parkinson's disease, Sci. World J. 2012 (2012) 923464.

[148]

M.F. Beal, R.T. Matthews, A. Tieleman, C.W. Shults, Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1, 2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice, Brain Res. 783 (1998) 109-114.

[149]

C. Cleren, L. Yang, B. Lorenzo, N.Y. Calingasan, A. Schomer, A. Sireci, E.J. Wille, M.F. Beal, Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism, J. Neurochem. 104 (2008) 1613-1621.

[150]

C.W. Shults, Therapeutic role of coenzyme Q(10) in Parkinson's disease, Pharmacol. Ther. 107 (2005) 120-130.

[151]

L.K. Mischley, J. Allen, R. Bradley, Coenzyme Q10 deficiency in patients with Parkinson's disease, J. Neurol. Sci. 318 (2012) 72-75.

[152]

C.W. Shults, D. Oakes, K. Kieburtz, M.F. Beal, R. Haas, S. Plumb, J.L. Juncos, J. Nutt, I. Shoulson, J. Carter, K. Kompoliti, J.S. Perlmutter, S. Reich, M. Stern, R.L. Watts, R. Kurlan, E. Molho, M. Harrison, M. Lew, Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline, Arch. Neurol. 59 (2002) 1541-1550.

[153]

A. Negida, A. Menshawy, G. El Ashal, Y. Elfouly, Y. Hani, Y. Hegazy, S. El ghonimy, S. Fouda, Y. Rashad, Coenzyme Q10 for patients with Parkinson's disease: a systematic review and meta-analysis, CNS Neurol. Disord. Drug Targets 15 (2016) 45-53.

[154]

Z.G. Zhu, M.X. Sun, W.L. Zhang, W.W. Wang, Y.M. Jin, C. Xie, The efficacy and safety of coenzyme Q10 in Parkinson's disease: a meta-analysis of randomized controlled trials, Neurol. Sci. 38 (2017) 215-224.

[155]
Food U.S. Drug Administration, Medical Foods Guidance Documents & Regulatory Information, 2019, Available from https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/MedicalFoods/default.htm (accessed 15.01.19).
[156]
The Commission of the European Communities, Commission Directive 1999/21/EC of 25 March 1999 on dietary foods for special medical purposes, Official Journal L 091 07/04/1999, 1999, pp. 0029–0036, Available from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31999L0021:EN:HTML (accessed 15.01.19).
[157]

K.W. Lange, K.M. Lange, E. Makulska-Gertruda, Y. Nakamura, A. Reissmann, S. Kanaya, J. Hauser, Ketogenic diets and Alzheimer's disease, Food Sci. Hum. Wellness 6 (2017) 1-9.

[158]

K.W. Lange, J. Guo, S. Kanaya, K.M. Lange, Y. Nakamura, Shiming Li, Medical foods in Alzheimer's disease, Food Sci. Hum. Wellness 8 (2019) 1-7.

[159]

D. Wlodarek, Role of ketogenic diets in neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), Nutrients 11 (2019) 169.

[160]

S.E. Seidl, J.A. Santiago, H. Bilyk, J.A. Potashkin, The emerging role of nutrition in Parkinson's disease, Front. Aging Neurosci. 6 (2014) 36.

[161]

R.J. Wurtman, J.J. Wurtman, M.M. Regan, J.M. McDermott, R.H. Tsay, J.J. Breu, Effects of normal meals rich in carbohydrates or proteins on plasma tryptophan and tyrosine ratios, Am. J. Clin. Nutr. 77 (2003) 128-132.

[162]

K. Murakami, Y. Miyake, S. Sasaki, K. Tanaka, W. Fukushima, C. Kiyohara, Y. Tsuboi, T. Yamada, T. Oeda, T. Miki, N. Kawamura, N. Sakae, H. Fukuyama, Y. Hirota, M. Nagai, Fukuoka Kinki Parkinson's Disease Study, Dietary glycemic index is inversely associated with the risk of Parkinson's disease: a case–control study in Japan, Nutrition 26 (2010) 515-521.

[163]

R. Krikorian, M.D. Shidler, K. Dangelo, S.C. Couch, S.C. Benoit, D.J. Clegg, Dietary ketosis enhances memory in mild cognitive impairment, Neurobiol. Aging 33 (2012) 425. e19–425. e27.

[164]

W.D. Parker Jr., J.K. Parks, R.H. Swerdlow, Complex I deficiency in Parkinson's disease frontal cortex, Brain Res. 1189 (2008) 215-216.

[165]

K. Tieu, C. Perier, C. Caspersen, P. Teismann, D.C. Wu, S.D. Yan, A. Naini, M. Vila, V. Jackson-Lewis, R. Ramasamy, S. Przedborski, D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease, J. Clin. Invest. 112 (2003) 892-901.

[166]

K.J. Bough, J. Wetherington, B. Hassel, J.F. Pare, J.W. Gawryluk, J.G. Greene, R. Shaw, Y. Smith, J.D. Geiger, R.J. Dingledine, Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet, Ann. Neurol. 60 (2006) 223-235.

[167]

T.B. VanItallie, C. Nonas, A. Di Rocco, K. Boyar, K. Hyams, S.B. Heymsfield, Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study, Neurology 64 (2005) 728-730.

[168]

M.C.L. Phillips, D.K.J. Murtagh, L.J. Gilbertson, F.J.S. Asztely, C.D.P. Lynch, Low-fat versus ketogenic diet in Parkinson's disease: a pilot randomized controlled trial, Mov. Disord. 33 (2018) 1306-1314.

[169]

A.M. Malek, G.G. Goss, L. Jiang, S. Izumo, S.L. Alper, Mannitol at clinical concentrations activates multiple signaling pathways and induces apoptosis in endothelial cells, Stroke 29 (1998) 2631-2640.

[170]

G.Y. Pan, X.D. Liu, G.Q. Liu, Intracarotid infusion of hypertonic mannitol changes permeability of blood-brain barrier to methotrexate in rats, Acta Pharmacol. Sin. 21 (2000) 613-616.

[171]

D.J. Begley, Delivery of therapeutic agents to the central nervous system: the problems and the possibilities, Pharmacol. Ther. 104 (2004) 29-45.

[172]

X. Liu, C. Chen, Strategies to optimize brain penetration in drug discovery, Curr. Opin. Drug Discov. Devel. 8 (2005) 505-512.

[173]

L.M. Holthauzen, D.W. Bolen, Mixed osmolytes: the degree to which one osmolyte affects the protein stabilizing ability of another, Protein Sci. 16 (2007) 293-298.

[174]

R.S. Rajan, K. Tsumoto, M. Tokunaga, H. Tokunaga, Y. Kita, T. Arakawa, Chemical and pharmacological chaperones: application for recombinant protein production and protein folding diseases, Curr. Med. Chem. 18 (2011) 1-15.

[175]

T.K. Chaudhuri, S. Paul, Protein-misfolding diseases and chaperone-based therapeutic approaches, FEBS J. 273 (2006) 1331-1349.

[176]

M.B. Feany, W.W. Bender, A Drosophila model of Parkinson's disease, Nature 404 (2000) 394-398.

[177]

R. Shaltiel-Karyo, M. Frenkel-Pinter, E. Rockenstein, C. Patrick, M. Levy-Sakin, A. Schiller, N. Egoz-Matia, E. Masliah, D. Segal, E. Gazit, A blood–brain barrier (BBB) disrupter is also a potent α-synuclein (α-syn) aggregation inhibitor, a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD), J. Biol. Chem. 288 (2013) 17579-17588.

[178]

E. Rockenstein, M. Mallory, M. Hashimoto, D. Song, C.W. Shults, I. Lang, E. Masliah, Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters, J. Neurosci. Res. 68 (2002) 568-578.

[179]

D. McCammon, Medical food to stop the progression of Parkinson's disease, Adv. Parkinson Dis. 3 (2014) 10-13.

[180]

R.G. Mattace, R. Russo, A. Calignano, R. Meli, Palmitoylethanolamide in CNS health and disease, Pharmacol. Res. 86 (2014) 32-41.

[181]

E. Esposito, D. Impellizzeri, E. Mazzon, I. Paterniti, S. Cuzzocrea, Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson's disease, PLoS One 7 (2012) e41880.

[182]

C. Avagliano, R. Russo, C. De Caro, C. Cristiano, G. La Rana, G. Piegari, O. Paciello, R. Citraro, E. Russo, G. De Sarro, R. Meli, G. Mattace Raso, A. Calignano, Palmitoylethanolamide protects mice against 6-OHDA-induced neurotoxicity and endoplasmic reticulum stress: in vivo and in vitro evidence, Pharmacol. Res. 13 (2016) 276-289.

[183]

C. Caltagirone, C. Cisari, C. Schievano, R. Di Paola, M. Cordaro, G. Bruschetta, E. Esposito, S. Cuzzocrea, Stroke Study Group, Co-ultramicronized palmitoylethanolamide/luteolin in the treatment of cerebral ischemia: from rodent to man, Transl. Stroke Res. 7 (2016) 54-69.

[184]

N.S. Orefice, M. Alhouayek, A. Carotenuto, S. Montella, F. Barbato, A. Comelli, A. Calignano, G.G. Muccioli, G. Orefice, Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-β1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis, Neurotherapeutics 13 (2016) 428-438.

[185]

S. Brotini, C. Schievano, L. Guidi, Ultra-micronized palmitoethanolamide: an efficacious adjuvant therapy for Parkinson's disease, CNS Neurol. Disord. Drug Targets 16 (2017) 705-713.

[186]

S.D. Skaper, L. Facci, M. Fusco, M.F. Della Valle, M. Zusso, B. Costa, P. Giusti, Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain, Inflammopharmacology 22 (2014) 79-94.

[187]

A. Keshavarzian, S.J. Green, P.A. Engen, R.M. Voigt, A. Naqib, C.B. Forsyth, E. Mutlu, K.M. Shannon, Colonic bacterial composition in Parkinson's disease, Mov. Disord. 30 (2015) 1351-1360.

[188]

F. Scheperjans, V. Aho, P.A.B. Pereira, K. Koskinen, L. Paulin, E. Pekkonen, E. Haapaniemi, S. Kaakkola, J. Eerola-Rautio, M. Pohja, E. Kinnunen, K. Murros, P. Auvinen, Gut microbiota are related to Parkinson's disease and clinical phenotype, Mov. Disord. 30 (2015) 350-358.

[189]

A. Becker, K. Faßbender, W.H. Oertel, M.M. Unger, A punch in the gut–intestinal inflammation links environmental factors to neurodegeneration in Parkinson's disease, Parkinsonism Relat. Disord. (2018), pii: S1353-8020(18)30428-0.

[190]

J.S. Bell, J.I. Spencer, R.L. Yates, S.A. Yee, B.M. Jacobs, G.C. DeLuca, Invited Review: From nose to gut – the role of the microbiome in neurological disease, Neuropathol. Appl. Neurobiol. (2018), http://dx.doi.org/10.1111/nan.12520.

[191]

C.N. Heiss, L.E. Olofsson, The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system, J. Neuroendocrinol. (2019) e12684.

[192]

S. Grenham, G. Clarke, J.F. Cryan, T.G. Dinan, Brain–gut–microbe communication in health and disease, Front. Physiol. 2 (2011) 94.

[193]

Y.E. Borre, R.D. Moloney, G. Clarke, T.G. Dinan, J.F. Cryan, The impact of microbiota on brain and behavior: mechanisms & therapeutic potential, Adv. Exp. Med. Biol. 817 (2014) 373-403.

[194]

P. Forsythe, J. Bienenstock, W.A. Kunze, Vagal pathways for microbiome–brain–gut axis communication, Adv. Exp. Med. Biol. 817 (2014) 115-133.

[195]

M.M. Unger, J. Spiegel, K.U. Dillmann, D. Grundmann, H. Philippeit, J. Burmann, K. Fassbender, A. Schwiertz, K.H. Schäfer, Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls, Parkinsonism Relat. Disord. 32 (2016) 66-72.

[196]

E.M. Hill-Burns, J.W. Debelius, J.T. Morton, W.T. Wissemann, M.R. Lewis, Z.D. Wallen, S.D. Peddada, S.A. Factor, E. Molho, C.P. Zabetian, R. Knight, H. Payami, Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome, Mov. Disord. 32 (2017) 739-749.

[197]

I. Peter, M. Dubinsky, S. Bressman, A. Park, C. Lu, N. Chen, A. Wang, Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease, JAMA Neurol. 75 (2018) 930-946.

[198]

A. Mulak, S. Budrewicz, M. Panek-Jeziorna, M. Koszewicz, M. Jasinska, B. Marczak- Karpina, K. Slotwinski, R. Podemski, L. Paradowski, Fecal Biomarkers of gut inflammation and intestinal barrier dysfunction in Parkinson's disease, Gastroenterology 152 (2017) S924.

[199]

A. Schwiertz, J. Spiegel, U. Dillmann, D. Grundmann, J. Burmann, K. Fassbender, K.H. Schäfer, M.M. Unger, Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson's disease, Parkinsonism Relat. Disord. 50 (2018) 104-107.

[200]

D. Devos, T. Lebouvier, B. Lardeux, M. Biraud, T. Rouaud, H. Pouclet, E. Coron, S. Bruley des Varannes, P. Naveilhan, J.M. Nguyen, M. Neunlist, P. Derkinderen, Colonic inflammation in Parkinson's disease, Neurobiol. Dis. 50 (2013) 42-48.

[201]

S.M. Dobbs, R.J. Dobbs, C. Weller, A. Charlett, A. Augustin, D. Taylor, M.A. Ibrahim, I. Bjarnason, Peripheral aetiopathogenic drivers and mediators of Parkinson's disease and comorbidities: role of gastrointestinal microbiota, J. Neurovirol. 22 (2016) 22-32.

[202]

M.C. Houser, J. Chang, S.A. Factor, E.S. Molho, C.P. Zabetian, E.M. Hill-Burns, H. Payami, V.S. Hertzberg, M.G. Tansey, Stool immune profiles evince gastrointestinal inflammation in Parkinson's disease, Mov. Disord. 33 (2018) 793-804.

[203]

T.C. Fung, C.A. Olson, E.Y. Hsiao, Interactions between the microbiota, immune and nervous systems in health and disease, Nat. Neurosci. 20 (2017) 145-155.

[204]

A. Ananthaswamy, Faecal transplant eases symptoms of Parkinson's disease, New Scientist 209 (2011) 8-9.

[205]

C. Hill, F. Guarner, G. Reid, G.R. Gibson, D.J. Merenstein, B. Pot, L. Morelli, R.B. Canani, H.J. Flint, S. Salminen, P.C. Calder, M.E. Sanders, Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic, Nat. Rev. Gastroenterol. Hepatol. 11 (2014) 506-514.

[206]

P. Bercik, A.J. Park, D. Sinclair, A. Khoshdel, J. Lu, X. Huang, Y. Deng, P.A. Blennerhassett, M. Fahnestock, D. Moine, B. Berger, J.D. Huizinga, W. Kunze, P.G. McLean, G.E. Bergonzelli, S.M. Collins, E.F. Verdu, The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication, Neurogastroenterol. Motil. 23 (2011) 1132-1139.

[207]

P. Bercik, E. Denou, J. Collins, W. Jackson, J. Lu, J. Jury, Y. Deng, P. Blennerhassett, J. Macri, K.D. McCoy, E.F. Verdu, S.M. Collins, The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice, Gastroenterology 141 (2011) 599-609.

[208]

H.M. Savignac, B. Kiely, T.G. Dinan, J.F. Cryan, Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice, Neurogastroenterol. Motil. 26 (2014) 1615-1627.

[209]

B. Sánchez, S. Delgado, A. Blanco-Míguez, A. Lourenço, M. Gueimonde, A. Margolles, Probiotics, gut microbiota, and their influence on host health and disease, Mol. Nutr. Food Res. 61 (2017) 1600-2240.

[210]

M. Barichella, C. Pacchetti, C. Bolliri, E. Cassani, L. Iorio, C. Pusani, G. Pinelli, G. Privitera, I. Cesari, S.A. Faierman, R. Caccialanza, G. Pezzoli, E. Cereda, Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT, Neurology 87 (2016) 1274-1280.

[211]

P. Perez-Pardo, T. Kliest, H.B. Dodiya, L.M. Broersen, J. Garssen, A. Keshavarzian, A.D. Kraneveld, The gut–brain axis in Parkinson's disease: Possibilities for food-based therapies, Eur. J. Pharmacol. 817 (2017) 86-95.

[212]

O.R. Tamtaji, M. Taghizadeh, R.D. Kakhaki, E. Kouchaki, F. Bahmani, S. Borzabadi, S. Oryan, A. Mafi, Z. Asemi, Clinical and metabolic response to probiotic administration in people with Parkinson's disease: a randomized, double-blind, placebo-controlled trial, Clin. Nutr. 2018 (2018), pii: S0261-5614(18)30203-6.

[213]

J.M. Taylor, B.S. Main, P.J. Crack, Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson's disease, Neurochem. Int. 62 (2013) 803-819.

[214]

A. Parashar, M. Udayabanu, Gut microbiota: implications in Parkinson's disease, Parkinsonism Relat. Disord. 38 (2017) 7.

[215]

M. Lyte, Microbial endocrinology in the microbiome–gut–brain axis: how bacterial production and utilization of neurochemicals influence behavior, PLoS Pathog. 9 (2013) e1003726.

[216]

M. Lyte, Microbial endocrinology and the microbiota–gut–brain axis, Adv. Exp. Med. Biol. 817 (2014) 3-24.

[217]

R. Valladares, L. Bojilova, A.H. Potts, E. Cameron, C. Gardner, G. Lorca, C.F. Gonzalez, Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats, FASEB J. 27 (2013) 1711-1720.

[218]

H. Sadrzadeh-Yeganeh, I. Elmadfa, A. Djazayery, M. Jalali, R. Heshmat, M. Chamary, The effects of probiotic and conventional yoghurt on lipid profile in women, Br. J. Nutr. 103 (2010) 1778-1783.

[219]

A. Kinoshita, H. Onoda, N. Imai, H. Nishino, H. Tajiri, C-reactive protein as a prognostic marker in patients with hepatocellular carcinoma, Hepatogastroenterology 62 (2015) 966-970.

[220]

J.A. Driver, A. Smith, J.E. Buring, J.M. Gaziano, T. Kurth, G. Logroscino, Prospective cohort study of type 2 diabetes and the risk of Parkinson's disease, Diabetes Care 31 (2008) 2003-2005.

[221]

F.B. Hu, Dietary pattern analysis: a new direction in nutritional epidemiology, Curr. Opin. Lipidol. 13 (2002) 3-9.

[222]

Y. Gu, N. Scarmeas, Dietary patterns in Alzheimer's disease and cognitive aging, Curr. Alzheimer Res. 8 (2011) 510-519.

[223]

C. Marras, A. Lang, Parkinson's disease subtypes: lost in translation? J. Neurol. Neurosurg. Psychiatry 84 (2013) 409-415.

[224]

J. Jankovic, M. McDermott, J. Carter, S. Gauthier, C. Goetz, L. Golbe, S. Huber, W. Koller, C. Olanow, I. Shoulson, M. Stern, C. Tanner, W. Weiner, Parkinson Study Group, Variable expression of Parkinson's disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group, Neurology 40 (1990) 1529-1534.

[225]

M.H. Mark, Lumping and splitting the Parkinson Plus syndromes: dementia with Lewy bodies, multiple system atrophy, progressive supranuclear palsy, and cortical-basal ganglionic degeneration, Neurol. Clin. 19 (2001) 607-627.

[226]

T.W. Robbins, M. James, A.M. Owen, K.W. Lange, A.J. Lees, P.N. Leigh, C.D. Marsden, N.P. Quinn, B.A. Summers, Cognitive deficits in progressive supranuclear palsy, Parkinson's disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction, J. Neurol. Neurosurg. Psychiatry 57 (1994) 79-88.

[227]

K.W. Lange, O. Tucha, G.L. Alders, M. Preier, I. Csoti, B. Merz, G. Mark, B. Herting, F. Fornadi, H. Reichmann, P. Vieregge, K. Reiners, G. Becker, M. Naumann, Differentiation of parkinsonian syndromes according to differences in executive functions, J. Neural Transm. 110 (2003) 983-995.

[228]

W.R.G. Gibb, A.J. Lees, The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease, J. Neurol. Neurosurg. Psychiatry 51 (1988) 745-752.

[229]

A. Siderowf, A.E. Lang, Premotor Parkinson's disease: concepts and definitions, Mov. Disord. 27 (2012) 608-616.

[230]

G.W. Ross, H. Petrovitch, R.D. Abbott, J. Nelson, W. Markesbery, D. Davis, J. Hardman, L. Launer, K. Masaki, C.M. Tanner, L.R. White, Parkinsonian signs and substantia nigra neuron density in decedent elders without PD, Ann. Neurol. 56 (2004) 532-539.

[231]

B. Berg, G. Becker, B. Zeiler, O. Tucha, E. Hofmann, M. Preier, P. Benz, K. Reiners, K.W. Lange, Vulnerability of the nigrostriatal system as detected by transcranial ultrasound, Neurology 53 (1999) 1026-1031.

[232]

P. Ruprecht-Dörfler, D. Berg, O. Tucha, P. Benz, M. Meier-Meitinger, G.L. Alders, K.W. Lange, G. Becker, Echogenicity of the substantia nigra in relatives of patients with sporadic Parkinson's disease, Neuroimage 18 (2003) 416-422.

[233]

K. Stiasny-Kolster, Y. Doerr, J.C. Möller, H. Höffken, T.M. Behr, W.H. Oertel, G. Mayer, Combination of 'idiopathic' REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT, Brain 128 (2005) 126-137.

[234]

A. Heintz-Buschart, U. Pandey, T. Wicke, F. Sixel-Döring, A. Janzen, E. Sittig-Wiegand, C. Trenkwalder, W.H. Oertel, B. Mollenhauer, P. Wilmes, The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder, Mov. Disord. 33 (2018) 88-98.

[235]

M.F. Sun, Y.Q. Shen, Dysbiosis of gut microbiota and microbial metabolites in Parkinson's disease, Ageing Res. Rev. 45 (2018) 53-61.

[236]

M.P. Mattson, Gene–diet interactions in brain aging and neurodegenerative disorders, Ann. Intern. Med. 139 (2003) 441-444.

Publication history
Copyright
Rights and permissions

Publication history

Received: 05 March 2019
Revised: 11 March 2019
Accepted: 13 March 2019
Published: 28 March 2019
Issue date: June 2019

Copyright

© 2019 “Society information”.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return