Journal Home > Volume 5 , Issue 3

The interest in food toxicology is evident by the dependency of humankind on nutrition by virtue of their heterotrophic metabolism. By means of modern biochemistry, molecular and cell biology, computer science, bioinformatics as well as high-throughput and high-content screening technologies it has been possible to identify adverse effects and characterize potential toxicants in food. The mechanisms of toxicant actions are multifactorial but many toxic effects converge on the generation of oxidative stress and chronic inflammation resulting in cell death, aging and degenerative diseases. Integration of food toxicology data obtained throughout biochemical and cell-based in vitro, animal in vivo and human clinical settings has enabled the establishment of alternative, highly predictable in silico models. These systems utilize a combination of complex in vitro cell-based models with computer-based algorithms. A decrease of rodent animal testing with its limitations of high costs, low throughput readouts, inconsistent responses, ethical issues and concerns of extrapolability to humans have led to an increased use of these but also alternative lower hierarchy surrogate animal models (e.g. Drosophila melanogaster; Caenorhabditis elegans or Danio rerio) and efforts to integrate organotypic systems and stem cell-based assays. Despite those achievements, there are numerous challenges in various disciplines of food toxicology.


menu
Abstract
Full text
Outline
About this article

Assessment of food toxicology

Show Author's information Alexander Gosslaua,b( )
Department of Science (Biology), City University of New York, BMCC, New York, NY 10007, United States
Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, United States

Peer review under responsibility of Beijing Academy of Food Sciences.

Abstract

The interest in food toxicology is evident by the dependency of humankind on nutrition by virtue of their heterotrophic metabolism. By means of modern biochemistry, molecular and cell biology, computer science, bioinformatics as well as high-throughput and high-content screening technologies it has been possible to identify adverse effects and characterize potential toxicants in food. The mechanisms of toxicant actions are multifactorial but many toxic effects converge on the generation of oxidative stress and chronic inflammation resulting in cell death, aging and degenerative diseases. Integration of food toxicology data obtained throughout biochemical and cell-based in vitro, animal in vivo and human clinical settings has enabled the establishment of alternative, highly predictable in silico models. These systems utilize a combination of complex in vitro cell-based models with computer-based algorithms. A decrease of rodent animal testing with its limitations of high costs, low throughput readouts, inconsistent responses, ethical issues and concerns of extrapolability to humans have led to an increased use of these but also alternative lower hierarchy surrogate animal models (e.g. Drosophila melanogaster; Caenorhabditis elegans or Danio rerio) and efforts to integrate organotypic systems and stem cell-based assays. Despite those achievements, there are numerous challenges in various disciplines of food toxicology.

Keywords: Inflammation, Oxidative stress, Food toxicology, In vitro, in vivo and in silico models, Alternative models

References(199)

[1]

D.J. Paustenbach, The practice of exposure assessment: a state-of-the-art review, J. Toxicol. Environ. Health B Crit. Rev. 3 (2000) 179-291.

[2]

S.M. Barlow, J.B. Greig, J.W. Bridges, A. Carere, A.J. Carpy, C.L. Galli, et al., Hazard identification by methods of animal-based toxicology, Food Chem. Toxicol. 40 (2002) 145-191.

[3]

G. Eisenbrand, B. Pool-Zobel, V. Baker, M. Balls, B.J. Blaauboer, A. Boobis, et al., Methods of in vitro toxicology, Food Chem. Toxicol. 40 (2002) 193-236.

[4]

K.A. Houck, R.J. Kavlock, Understanding mechanisms of toxicity: insights from drug discovery research, Toxicol. Appl. Pharmacol. 227 (2008) 163-178.

[5]

H. Sun, M. Xia, C.P. Austin, R. Huang, Paradigm shift in toxicity testing and modeling, AAPS J. 14 (2012) 473-480.

[6]

V. Ahuja, S. Sharma, Drug safety testing paradigm, current progress and future challenges: an overview, J. Appl. Toxicol. 34 (2014) 576-594.

[7]

T.B. Knudsen, D.A. Keller, M. Sander, E.W. Carney, N.G. Doerrer, D.L. Eaton, et al., FutureTox II: in vitro data and in silico models for predictive toxicology, Toxicol. Sci. 143 (2015) 256-267.

[8]

P. McGonigle, B. Ruggeri, Animal models of human disease: challenges in enabling translation, Biochem. Pharmacol. 87 (2014) 162-171.

[9]

P.J. O’Brien, High-content analysis in toxicology: screening substances for human toxicity potential, elucidating subcellular mechanisms and in vivo use as translational safety biomarkers, Basic Clin. Pharmacol. Toxicol. 115 (2014) 4-17.

[10]

D.J. Newman, G.M. Cragg, Natural products as sources of new drugs over the last 25 years, J. Nat. Prod. 70 (2007) 461-477.

[11]

H. Sies, Strategies of antioxidant defense, Eur. J. Biochem. 215 (1993) 213-219.

[12]

K. Davies, Oxidative Stress: The Paradox of Aerobic Life, Portland Press, London 1995.

DOI
[13]

R.A. Roberts, D.L. Laskin, C.V. Smith, F.M. Robertson, E.M. Allen, J.A. Doorn, et al., Nitrative and oxidative stress in toxicology and disease, Toxicol. Sci. 112 (2009) 4-16.

[14]

S. Reuter, S.C. Gupta, M.M. Chaturvedi, B.B. Aggarwal, Oxidative stress, inflammation, and cancer: how are they linked?, Free Radic. Biol. Med. 49 (2010) 1603-1616.

[15]

G. Landskron, M. De la Fuente, P. Thuwajit, C. Thuwajit, M.A. Hermoso, Chronic inflammation and cytokines in the tumor microenvironment, J. Immunol. Res. 2014 (2014) 149185.

[16]

R. Floyd, Role of oxygen free radicals in carcinogenesis and brain ischemia, FASEB J. 4 (1990) 2587-2597.

[17]

J. Knight, Free radicals: their history and current status in aging and disease, Ann. Clin. Lab. Sci. 28 (1998) 331-346.

[18]

D. Cottrell, E. Blakely, G. Borthwick, M. Johnson, G. Taylor, E. Brierley, et al., Role of mitochondrial DNA mutations in disease and aging, Ann. N.Y. Acad. Sci. 908 (2000) 199-207.

[19]

L. Marnett, Oxyradicals and DNA damage, Carcinogenesis 21 (2000) 361-370.

[20]

P. Kovacic, J. Jacintho, Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer, Curr. Med. Chem. 8 (2001) 773-796.

[21]

B. Uttara, A.V. Singh, P. Zamboni, R.T. Mahajan, Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options, Curr. Neuropharmacol. 7 (2009) 65-74.

[22]

M.C. Calle, M.L. Fernandez, Inflammation and type 2 diabetes, Diabetes Metab. 38 (2012) 183-191.

[23]

H.N. Siti, Y. Kamisah, J. Kamsiah, The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review), Vascul. Pharmacol. 71 (2015) 40-56.

[24]

A.M. Jeffrey, G.M. Williams, Risk assessment of DNA-reactive carcinogens in food, Toxicol. Appl. Pharmacol. 207 (2005) 628-635.

[25]

M.Y. Lee, J.S. Dordick, High-throughput human metabolism and toxicity analysis, Curr. Opin. Biotechnol. 17 (2006) 619-627.

[26]

E. Niki, Lipid peroxidation: physiological levels and dual biological effects, Free Radic. Biol. Med. 47 (2009) 469-484.

[27]

B. Mahadevan, R.D. Snyder, M.D. Waters, R.D. Benz, R.A. Kemper, R.R. Tice, et al., Genetic toxicology in the 21st century: reflections and future directions, Environ. Mol. Mutagen. 52 (2011) 339-354.

[28]

U.M. Zanger, M. Schwab, Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation, Pharmacol. Ther. 138 (2013) 103-141.

[29]

A. Anadon, M.A. Martinez, V. Castellano, M.R. Martinez-Larranaga, The role of in vitro methods as alternatives to animals in toxicity testing, Expert Opin. Drug Metab. Toxicol. 10 (2014) 67-79.

[30]

V.N. Sumantran, Cellular chemosensitivity assays: an overview, Methods Mol. Biol. 731 (2011) 219-236.

[31]

A. Astashkina, B. Mann, D.W. Grainger, A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity, Pharmacol. Ther. 134 (2012) 82-106.

[32]

M. Yoon, J.L. Campbell, M.E. Andersen, H.J. Clewell, Quantitative in vitro to in vivo extrapolation of cell-based toxicity assay results, Crit. Rev. Toxicol. 42 (2012) 633-652.

[33]

L.G. Valerio Jr., In silico toxicology for the pharmaceutical sciences, Toxicol. Appl. Pharmacol. 241 (2009) 356-370.

[34]

I. Wilk-Zasadna, C. Bernasconi, O. Pelkonen, S. Coecke, Biotransformation in vitro: an essential consideration in the quantitative in vitro-to-in vivo extrapolation (QIVIVE) of toxicity data, Toxicology 332 (2015) 8-19.

[35]

N. Fabre, I. Anglade, J.A. Vericat, Application of toxicogenomic tools in the drug research and development process, Toxicol. Lett. 186 (2009) 13-17.

[36]

B.A. Merrick, F.A. Witzmann, The role of toxicoproteomics in assessing organ specific toxicity, EXS 99 (2009) 367-400.

[37]

J. George, R. Singh, Z. Mahmood, Y. Shukla, Toxicoproteomics: new paradigms in toxicology research, Toxicol. Mech. Methods 20 (2010) 415-423.

[38]

N. Kiyosawa, S. Manabe, T. Yamoto, A. Sanbuissho, Practical application of toxicogenomics for profiling toxicant-induced biological perturbations, Int. J. Mol. Sci. 11 (2010) 3397-3412.

[39]

M. Ouedraogo, T. Baudoux, C. Stevigny, J. Nortier, J.M. Colet, T. Efferth, et al., Review of current and “omics” methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms, J. Ethnopharmacol. 140 (2012) 492-512.

[40]

K. Nishi, S. Isobe, Y. Zhu, R. Kiyama, Fluorescence-based bioassays for the detection and evaluation of food materials, Sensors (Basel) 15 (2015) 25831-25867.

[41]

T. Heinonen, Better science with human cell-based organ and tissue models, Altern. Lab. Anim. 43 (2015) 29-38.

[42]

J. Giacomotto, L. Segalat, High-throughput screening and small animal models, where are we?, Br. J. Pharmacol. 160 (2010) 204-216.

[43]

U.B. Pandey, C.D. Nichols, Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery, Pharmacol. Rev. 63 (2011) 411-436.

[44]

W.B. Barbazuk, I. Korf, C. Kadavi, J. Heyen, S. Tate, E. Wun, et al., The syntenic relationship of the zebrafish and human genomes, Genome Res. 10 (2000) 1351-1358.

[45]

E. Bier, Drosophila, the golden bug, emerges as a tool for human genetics, Nat. Rev. Genet. 6 (2005) 9-23.

[46]

M.C. Leung, P.L. Williams, A. Benedetto, C. Au, K.J. Helmcke, M. Aschner, et al., Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology, Toxicol. Sci. 106 (2008) 5-28.

[47]

K. Prussing, A. Voigt, J.B. Schulz, Drosophila melanogaster as a model organism for Alzheimer's disease, Mol. Neurodegener. 8 (2013) 35.

[48]

S. Chakravarthy, S. Sadagopan, A. Nair, S.K. Sukumaran, Zebrafish as an in vivo high-throughput model for genotoxicity, Zebrafish 11 (2014) 154-166.

[49]

D. Raldua, B. Pina, In vivo zebrafish assays for analyzing drug toxicity, Expert Opin. Drug Metab. Toxicol. 10 (2014) 685-697.

[50]

H. Olson, G. Betton, D. Robinson, K. Thomas, A. Monro, G. Kolaja, et al., Concordance of the toxicity of pharmaceuticals in humans and in animals, Regul. Toxicol. Pharmacol. 32 (2000) 56-67.

[51]

M.E. Andersen, M. Al-Zoughool, M. Croteau, M. Westphal, D. Krewski, The future of toxicity testing, J. Toxicol. Environ. Health B Crit. Rev. 13 (2010) 163-196.

[52]

A. Borchers, S.S. Teuber, C.L. Keen, M.E. Gershwin, Food safety, Clin. Rev. Allergy Immunol. 39 (2010) 95-141.

[53]

A. Dash, B.R. Blackman, B.R. Wamhoff, Organotypic systems in drug metabolism and toxicity: challenges and opportunities, Expert Opin. Drug Metab. Toxicol. 8 (2012) 999-1014.

[54]

E.R. Shamir, A.J. Ewald, Three-dimensional organotypic culture: experimental models of mammalian biology and disease, Nat. Rev. Mol. Cell Biol. 15 (2014) 647-664.

[55]

K. Vojnits, S. Bremer, Challenges of using pluripotent stem cells for safety assessments of substances, Toxicology 270 (2010) 10-17.

[56]

W. Liu, Y. Deng, Y. Liu, W. Gong, W. Deng, Stem cell models for drug discovery and toxicology studies, J. Biochem. Mol. Toxicol. 27 (2013) 17-27.

[57]

J.Z. Johnson, D. Hockemeyer, Human stem cell-based disease modeling: prospects and challenges, Curr. Opin. Cell Biol. 37 (2015) 84-90.

[58]

D. Kirkland, S. Pfuhler, D. Tweats, M. Aardema, R. Corvi, F. Darroudi, et al., How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM Workshop, Mutat. Res. 628 (2007) 31-55.

[59]

R. Kettenhofen, H. Bohlen, Preclinical assessment of cardiac toxicity, Drug Discov. Today 13 (2008) 702-707.

[60]

U. Kraushaar, T. Meyer, D. Hess, L. Gepstein, C.L. Mummery, S.R. Braam, et al., Cardiac safety pharmacology: from human ether-a-gogo related gene channel block towards induced pluripotent stem cell based disease models, Expert Opin. Drug Saf. 11 (2012) 285-298.

[61]

A. Gosslau, S. Li, C.T. Ho, K.Y. Chen, N.E. Rawson, The importance of natural product characterization in studies of their anti-inflammatory activity, Mol. Nutr. Food Res. 55 (2011) 74-82.

[62]

D.P. Jones, Redefining oxidative stress, Antioxid. Redox Signal. 8 (2006) 1865-1879.

[63]

R. Franco, R. Sanchez-Olea, E.M. Reyes-Reyes, M.I. Panayiotidis, Environmental toxicity, oxidative stress and apoptosis: menage a trois, Mutat. Res. 674 (2009) 3-22.

[64]

Z. Alfassi, General Aspects of the Chemistry of Radicals, J. Wiley, Cichester 1999.

[65]

T. Finkel, N. Holbrook, Oxidants, oxidants stress and the biology of ageing, Nature 408 (2000) 239-247.

[66]

B. Halliwell, J. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219 (1984) 1-14.

[67]

S. Stohs, D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free Radic. Biol. Med. 18 (1995) 321-326.

[68]

H. Ischiropoulos, L. Zhu, J. Beckman, Peroxynitrite formation from macrophage-derived nitric oxide, Arch. Biochem. Biophys. 298 (1992) 446-451.

[69]

L. Ouyang, Z. Shi, S. Zhao, F.T. Wang, T.T. Zhou, B. Liu, et al., Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis, Cell Prolif. 45 (2012) 487-498.

[70]

G. Buettner, The pecking order of free radicals and antioxidants, Arch. Biochem. Biophys. 300 (1993) 535-543.

[71]

F. Antunes, A. Salvador, H. Marinho, R. Alves, R. Pinto, Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model, Free Radic. Biol. Med. 21 (1996) 917-943.

[72]

M. Dianzani, G. Barrera, Pathology and Physiology of Lipid Peroxidation and Its Carbonyl Products, Transworld Research Network, Kerala, India 2008.

[73]

M. Kastle, T. Grune, Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system, Curr. Pharm. Des. 17 (2011) 4007-4022.

[74]

A. Hohn, T. Jung, T. Grune, Pathophysiological importance of aggregated damaged proteins, Free Radic. Biol. Med. 71 (2014) 70-89.

[75]

E. Stadtman, Protein oxidation and aging, Science 257 (1992) 1220-1224.

[76]

K. Davies, Protein modifcation by oxidants and the role of proteolytic enzymes, Biochem. Soc. Trans. 21 (1993) 346-353.

[77]

K. Davies, Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems, IUBMB Life 50 (2000) 279-289.

[78]

E.S. Hwang, P.E. Bowen, DNA damage, a biomarker of carcinogenesis: its measurement and modulation by diet and environment, Crit. Rev. Food Sci. Nutr. 47 (2007) 27-50.

[79]

P. Moller, P.H. Danielsen, K. Jantzen, M. Roursgaard, S. Loft, Oxidatively damaged DNA in animals exposed to particles, Crit. Rev. Toxicol. 43 (2013) 96-118.

[80]

Z. Li, S. Malla, B. Shin, J.M. Li, Battle against RNA oxidation: molecular mechanisms for reducing oxidized RNA to protect cells, Wiley Interdiscip. Rev. RNA 5 (2014) 335-346.

[81]

R.D. Snyder, Assessment of atypical DNA intercalating agents in biological and in silico systems, Mutat. Res. 623 (2007) 72-82.

[82]

R.H.C. San, Preclinical Genotoxicity Testing-Past, Present, and Future,Informa Healthcare, USA, 2006.

DOI
[83]

L.L. Custer, K.S. Sweder, The role of genetic toxicology in drug discovery and optimization, Curr. Drug Metab. 9 (2008) 978-985.

[84]

J. McCann, E. Choi, E. Yamasaki, B.N. Ames, Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals, Proc. Natl. Acad. Sci. U.S.A. 72 (1975) 5135-5139.

[85]

K. Mortelmans, E. Zeiger, The Ames Salmonella/microsome mutagenicity assay, Mutat. Res. 455 (2000) 29-60.

[86]

M.C. Sanguinetti, M. Tristani-Firouzi, hERG potassium channels and cardiac arrhythmia, Nature 440 (2006) 463-469.

[87]

O. Taboureau, F.S. Jorgensen, In silico predictions of hERG channel blockers in drug discovery: from ligand-based and target-based approaches to systems chemical biology, Comb. Chem. High Throughput Screen. 14 (2011) 375-387.

[88]

S.F. Ferreiro, C. Carrera, N. Vilarino, M.C. Louzao, G. Santamarina, A.G. Cantalapiedra, et al., Acute cardiotoxicity evaluation of the marine biotoxins OA, DTX-1 and YTX, Toxins (Basel) 7 (2015) 1030-1047.

[89]

T. Wille, H. Thiermann, F. Worek, Development of a high-throughput screening for nerve agent detoxifying materials using a fully-automated robot-assisted biological assay, Toxicol. In Vitro 24 (2010) 1026-1031.

[90]

F. Worek, P. Eyer, H. Thiermann, Determination of acetylcholinesterase activity by the Ellman assay: a versatile tool for in vitro research on medical countermeasures against organophosphate poisoning, Drug Test. Anal. 4 (2012) 282-291.

[91]

S. Andersson, M. Norman, R. Olsson, R. Smith, G. Liu, J. Nord, High-precision, room temperature screening assay for inhibitors of microsomal prostaglandin E synthase-1, J. Biomol. Screen. 17 (2012) 1372-1378.

[92]

A.D. Patterson, F.J. Gonzalez, J.R. Idle, Xenobiotic metabolism: a view through the metabolometer, Chem. Res. Toxicol. 23 (2010) 851-860.

[93]

E.F. Brandon, C.D. Raap, I. Meijerman, J.H. Beijnen, J.H. Schellens, An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons, Toxicol. Appl. Pharmacol. 189 (2003) 233-246.

[94]

N. Hariparsad, R.S. Sane, S.C. Strom, P.B. Desai, In vitro methods in human drug biotransformation research: implications for cancer chemotherapy, Toxicol. In Vitro 20 (2006) 135-153.

[95]

R.S. Foti, L.C. Wienkers, J.L. Wahlstrom, Application of cytochrome P450 drug interaction screening in drug discovery, Comb. Chem. High Throughput Screen. 13 (2010) 145-158.

[96]

J. Eppinger, D.P. Funeriu, M. Miyake, L. Denizot, J. Miyake, Enzyme microarrays: on-chip determination of inhibition constants based on affinity-label detection of enzymatic activity, Angew. Chem. Int. Ed. Engl. 43 (2004) 3806-3810.

[97]

O.V. Trubetskoy, J.R. Gibson, B.D. Marks, Highly miniaturized formats for in vitro drug metabolism assays using vivid fluorescent substrates and recombinant human cytochrome P450 enzymes, J. Biomol. Screen. 10 (2005) 56-66.

[98]

K.Y. Horiuchi, Y. Wang, S.L. Diamond, H. Ma, Microarrays for the functional analysis of the chemical-kinase interactome, J. Biomol. Screen. 11 (2006) 48-56.

[99]

M.Y. Lee, C.B. Park, J.S. Dordick, D.S. Clark, Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 983-987.

[100]

M.T. Donato, A. Lahoz, J.V. Castell, M.J. Gomez-Lechon, Cell lines: a tool for in vitro drug metabolism studies, Curr. Drug Metab. 9 (2008) 1-11.

[101]

F. Bernheim, M. Bernheim, K. Wilbur, The reaction between thiobarbituric acid and the oxidation products of certain lipids, J. Biol. Chem. 174 (1948) 257-264.

[102]

J. Liu, H. Yeo, S. Doniger, B. Ames, Assay of aldehydes from lipid peroxidation: gas chromatograph-mass spectrometry compared to thiobarbituric acid, Anal. Biochem. 245 (1997) 161-166.

[103]

P. Montuschi, P.J. Barnes, , Isoprostanes: markers and mediators of oxidative stress, FASEB J. 18 (2004) 1791-1800.

[104]

G.L. Milne, S.C. Sanchez, E.S. Musiek, J.D. Morrow, Quantification of F2-isoprostanes as a biomarker of oxidative stress, Nat. Protoc. 2 (2007) 221-226.

[105]

B. Gonzalez Flecha, S. Llesuy, A. Boveris, Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle, Free Radic. Biol. Med. 10 (1991) 93-100.

[106]

M.G. Repetto, Clinical Use of Chemiluminescence Assays for the Determination of Systemic Oxidative Stress, Transworld Research Network, Kerala, India 2008.

[107]

M.J. Stoddart, Cell viability assays: introduction, Methods Mol. Biol. 740 (2011) 1-6.

[108]

T.F. Uliasz, S.J. Hewett, A microtiter trypan blue absorbance assay for the quantitative determination of excitotoxic neuronal injury in cell culture, J. Neurosci. Methods 100 (2000) 157-163.

[109]

K. Saotome, H. Morita, M. Umeda, Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs, Toxicol. In Vitro 3 (1989) 317-321.

[110]

H. Itagaki, S. Hagino, S. Kato, T. Kobayashi, M. Umeda, An in vitro alternative to the Draize eye-irritation test: evaluation of the crystal violet staining method, Toxicol. In Vitro 5 (1991) 139-143.

[111]

T. Decker, M.L. Lohmann-Matthes, A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity, J. Immunol. Methods 115 (1988) 61-69.

[112]

E. Borenfreund, J.A. Puerner, Toxicity determined in vitro by morphological alterations and neutral red absorption, Toxicol. Lett. 24 (1985) 119-124.

[113]

K. Berg, M. Hansen, S. Nielsen, A new sensitive bioassay for precise quantification of interferon activity as measured via the mitochondrial dehydrogenase function in cells (MTT-method), APMIS 98 (1990) 156-162.

[114]

S.N. Rampersad, Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays, Sensors (Basel) 12 (2012) 12347-12360.

[115]

M.V. Berridge, P.M. Herst, A.S. Tan, Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction, Biotechnol. Annu. Rev. 11 (2005) 127-152.

[116]

A. Gosslau, M. Chen, C. Ho, K. Chen, A methoxy derivative of resveratrol analogue selectively induced activation of the mitochondrial apoptotic pathway in transformed fibroblasts, Br. J. Cancer 92 (2005) 513-521.

[117]

D. Wallace, Mitochondrial diseases in man and mouse, Science 283 (1999) 1482-1488.

[118]

J.A. Dykens, Y. Will, Drug-Induced Mitochondrial Dysfunction, Wiley, Hoboken, NJ 2008.

DOI
[119]

J.N. Meyer, M.C. Leung, J.P. Rooney, A. Sendoel, M.O. Hengartner, G.E. Kisby, et al., Mitochondria as a target of environmental toxicants, Toxicol. Sci. 134 (2013) 1-17.

[120]

M. Chen, M. Zhang, J. Borlak, W. Tong, A decade of toxicogenomic research and its contribution to toxicological science, Toxicol. Sci. 130 (2012) 217-228.

[121]

A. Gosslau, S. Sisk, M.-T. Huang, C.-T. Ho, K.Y. Chen, Case study of an anti-inflammatory ingredient discovered via nutrigenomic screening, J. Nutrigenet. Nutrigenomics 1 (2008) 76-77.

[122]

L. Gruber, P. Lichti, E. Rath, D. Haller, Nutrigenomics and nutrigenetics in inflammatory bowel diseases, J. Clin. Gastroenterol. 46 (2012) 735-747.

[123]

L. Afman, D. Milenkovic, H.M. Roche, Nutritional aspects of metabolic inflammation in relation to health – insights from transcriptomic biomarkers in PBMC of fatty acids and polyphenols, Mol. Nutr. Food Res. 58 (2014) 1708-1720.

[124]

M.D. Waters, H.F. Stack, M.A. Jackson, B.A. Bridges, I.D. Adler, The performance of short-term tests in identifying potential germ cell mutagens: a qualitative and quantitative analysis, Mutat. Res. 341 (1994) 109-131.

[125]

R. Luebke, Immunotoxicant screening and prioritization in the twenty-first century, Toxicol. Pathol. 40 (2012) 294-299.

[126]

T. Hartung, E. Corsini, Immunotoxicology: challenges in the 21st century and in vitro opportunities, ALTEX 30 (2013) 411-426.

[127]

M. Persson, A.F. Loye, M. Jacquet, N.S. Mow, A.V. Thougaard, T. Mow, et al., High-content analysis/screening for predictive toxicology: application to hepatotoxicity and genotoxicity, Basic Clin. Pharmacol. Toxicol. 115 (2014) 18-23.

[128]

B. Simon-Hettich, A. Rothfuss, T. Steger-Hartmann, Use of computer-assisted prediction of toxic effects of chemical substances, Toxicology 224 (2006) 156-162.

[129]

M. Chen, H. Bisgin, L. Tong, H. Hong, H. Fang, J. Borlak, et al., Toward predictive models for drug-induced liver injury in humans: are we there yet?, Biomark. Med. 8 (2014) 201-213.

[130]

M.J. Gomez-Lechon, L. Tolosa, I. Conde, M.T. Donato, Competency of different cell models to predict human hepatotoxic drugs, Expert Opin. Drug Metab. Toxicol. 10 (2014) 1553-1568.

[131]

J.X. Huang, M.A. Blaskovich, M.A. Cooper, Cell- and biomarker-based assays for predicting nephrotoxicity, Expert Opin. Drug Metab. Toxicol. 10 (2014) 1621-1635.

[132]

H.Y. Tiong, P. Huang, S. Xiong, Y. Li, A. Vathsala, D. Zink, Drug-induced nephrotoxicity: clinical impact and preclinical in vitro models, Mol. Pharm. 11 (2014) 1933-1948.

[133]

R.A. Smith, Twenty-first century challenges for in vitro neurotoxicity, Altern. Lab. Anim. 37 (2009) 367-375.

[134]

K.M. Crofton, W.R. Mundy, T.J. Shafer, Developmental neurotoxicity testing: a path forward, Congenit. Anom. (Kyoto) 52 (2012) 140-146.

[135]

S. Kadereit, B. Zimmer, C. van Thriel, J.G. Hengstler, M. Leist, Compound selection for in vitro modeling of developmental neurotoxicity, Front. Biosci. (Landmark Ed.) 17 (2012) 2442-2460.

[136]

M.F. Peters, S.D. Lamore, L. Guo, C.W. Scott, K.L. Kolaja, Human stem cell-derived cardiomyocytes in cellular impedance assays: bringing cardiotoxicity screening to the front line, Cardiovasc. Toxicol. 15 (2015) 127-139.

[137]

J.E. Nichols, J.A. Niles, S.P. Vega, J. Cortiella, Novel in vitro respiratory models to study lung development, physiology, pathology and toxicology, Stem Cell Res. Ther. 4 (Suppl. 1) (2013) S7.

[138]

E. Frohlich, S. Salar-Behzadi, Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies, Int. J. Mol. Sci. 15 (2014) 4795-4822.

[139]

K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell 126 (2006) 663-676.

[140]

C. Merlot, Computational toxicology – a tool for early safety evaluation, Drug Discov. Today 15 (2010) 16-22.

[141]

B.E. Erickson, Modernizing toxicity tests, Chem. Eng. News 89 (2011) 25-26.

[142]

B. Garthoff, Alternatives to animal experimentation: the regulatory background, Toxicol. Appl. Pharmacol. 207 (2005) 388-392.

[143]

K.M. Moore, A. Duddy, M.M. Braun, R. Platt, J.S. Brown, Potential population-based electronic data sources for rapid pandemic influenza vaccine adverse event detection: a survey of health plans, Pharmacoepidemiol. Drug Saf. 17 (2008) 1137-1141.

[144]

H. Van Cauteren, C.E. Lumley, Harmonization of international toxicity testing guidelines for pharmaceuticals. Contributions to refinement and reduction in animal use, Eur. Biomed. Res. Assoc. Bull. 11 (1997) 4-9.

[145]

G.M. Rubin, E.B. Lewis, A brief history of Drosophila's contributions to genome research, Science 287 (2000) 2216-2218.

[146]

R. Drysdale, C. FlyBase, FlyBase: a database for the Drosophila research community, Methods Mol. Biol. 420 (2008) 45-59.

[147]

C.D. Nichols, Drosophila melanogaster neurobiology, neuropharmacology, and how the fly can inform central nervous system drug discovery, Pharmacol. Ther. 112 (2006) 677-700.

[148]

A.J. Whitworth, P.D. Wes, L.J. Pallanck, Drosophila models pioneer a new approach to drug discovery for Parkinson's disease, Drug Discov. Today 11 (2006) 119-126.

[149]

L. Segalat, Invertebrate animal models of diseases as screening tools in drug discovery, ACS Chem. Biol. 2 (2007) 231-236.

[150]

A. Cho, J. Shin, S. Hwang, C. Kim, H. Shim, H. Kim, et al., WormNet v3: a network-assisted hypothesis-generating server for Caenorhabditis elegans, Nucleic Acids Res. 42 (2014) W76-W82.

[151]

D. Meyer, P.L. Williams, Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans, J. Toxicol. Environ. Health B Crit. Rev. 17 (2014) 284-306.

[152]

Q.L. Ruan, J.J. Ju, Y.H. Li, R. Liu, Y.P. Pu, L.H. Yin, et al., Evaluation of pesticide toxicities with differing mechanisms using Caenorhabditis elegans, J. Toxicol. Environ. Health A 72 (2009) 746-751.

[153]

D. Avila, K. Helmcke, M. Aschner, The Caenorhabiditis elegans model as a reliable tool in neurotoxicology, Hum. Exp. Toxicol. 31 (2012) 236-243.

[154]

K.A. McVey, J.A. Mink, I.B. Snapp, W.S. Timberlake, C.E. Todt, R. Negga, et al., Caenorhabditis elegans: an emerging model system for pesticide neurotoxicity, J. Environ. Anal. Toxicol. 2 (2012) 125-135.

[155]

K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, et al., Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature 425 (2003) 191-196.

[156]

A.J. Hill, H. Teraoka, W. Heideman, R.E. Peterson, Zebrafish as a model vertebrate for investigating chemical toxicity, Toxicol. Sci. 86 (2005) 6-19.

[157]

D.R. Love, F.B. Pichler, A. Dodd, B.R. Copp, D.R. Greenwood, Technology for high-throughput screens: the present and future using zebrafish, Curr. Opin. Biotechnol. 15 (2004) 564-571.

[158]

P. McGrath, C.Q. Li, Zebrafish: a predictive model for assessing drug-induced toxicity, Drug Discov. Today 13 (2008) 394-401.

[159]

S. van Tongeren, J.A. Fagerland, M.W. Conner, K. Diegel, K. Donnelly, B. Grubor, et al., The role of the toxicologic pathologist in the biopharmaceutical industry, Int. J. Toxicol. 30 (2011) 568-582.

[160]

H. Maeda, T. Ishikawa, T. Michiue, Forensic molecular pathology: its impacts on routine work, education and training, Leg. Med. (Tokyo) 16 (2014) 61-69.

[161]

R.J. Dinis-Oliveira, F. Carvalho, J.A. Duarte, F. Remiao, A. Marques, A. Santos, et al., Collection of biological samples in forensic toxicology, Toxicol. Mech. Methods 20 (2010) 363-414.

[162]

E.C. Hennes, An overview of values for the threshold of toxicological concern, Toxicol. Lett. 211 (2012) 296-303.

[163]

A.F. Hubbs, L.M. Sargent, D.W. Porter, T.M. Sager, B.T. Chen, D.G. Frazer, et al., Nanotechnology: toxicologic pathology, Toxicol. Pathol. 41 (2013) 395-409.

[164]

M. Azhdarzadeh, A.A. Saei, S. Sharifi, M.J. Hajipour, A.M. Alkilany, M. Sharifzadeh, et al., Nanotoxicology: advances and pitfalls in research methodology, Nanomedicine (Lond.) 10 (2015) 2931-2952.

[165]

D. Bitounis, J. Pourchez, V. Forest, D. Boudard, M. Cottier, J.P. Klein, Detection and analysis of nanoparticles in patients: a critical review of the status quo of clinical nanotoxicology, Biomaterials 76 (2016) 302-312.

[166]

A. Dona, I.S. Arvanitoyannis, Health risks of genetically modified foods, Crit. Rev. Food Sci. Nutr. 49 (2009) 164-175.

[167]

A.E. Ricroch, Assessment of GE food safety using ‘-omics’ techniques and long-term animal feeding studies, N. Biotechnol. 30 (2013) 349-354.

[168]

P. van den Brandt, L. Voorrips, I. Hertz-Picciotto, D. Shuker, H. Boeing, G. Speijers, et al., The contribution of epidemiology, Food. Chem. Toxicol. 40 (2002) 387-424.

[169]

R. Frank, R. Hargreaves, Clinical biomarkers in drug discovery and development, Nat. Rev. Drug Discov. 2 (2003) 566-580.

[170]

J.T. MacGregor, The future of regulatory toxicology: impact of the biotechnology revolution, Toxicol. Sci. 75 (2003) 236-248.

[171]

R. Bakhtiar, Biomarkers in drug discovery and development, J. Pharmacol. Toxicol. Methods 57 (2008) 85-91.

[172]

J. Louisse, M. Verwei, R.A. Woutersen, B.J. Blaauboer, I.M. Rietjens, Toward in vitro biomarkers for developmental toxicity and their extrapolation to the in vivo situation, Expert Opin. Drug Metab. Toxicol. 8 (2012) 11-27.

[173]

S. Campion, J. Aubrecht, K. Boekelheide, D.W. Brewster, V.S. Vaidya, L. Anderson, et al., The current status of biomarkers for predicting toxicity, Expert Opin. Drug Metab. Toxicol. 9 (2013) 1391-1408.

[174]

M. Bouhifd, T. Hartung, H.T. Hogberg, A. Kleensang, L. Zhao, Review: toxicometabolomics, J. Appl. Toxicol. 33 (2013) 1365-1383.

[175]

M. Rudin, R. Weissleder, Molecular imaging in drug discovery and development, Nat. Rev. Drug Discov. 2 (2003) 123-131.

[176]

P.M. Matthews, R. Coatney, H. Alsaid, B. Jucker, S. Ashworth, C. Parker, et al., Technologies: preclinical imaging for drug development, Drug Discov. Today Technol. 10 (2013) e343-e350.

[177]

R.A. Comley, D. Kallend, Imaging in the cardiovascular and metabolic disease area, Drug Discov. Today 18 (2013) 185-192.

[178]

O. Nicolotti, E. Benfenati, A. Carotti, D. Gadaleta, A. Gissi, G.F. Mangiatordi, et al., REACH and in silico methods: an attractive opportunity for medicinal chemists, Drug Discov. Today 19 (2014) 1757-1768.

[179]

C.A. Afshari, H.K. Hamadeh, P.R. Bushel, The evolution of bioinformatics in toxicology: advancing toxicogenomics, Toxicol. Sci. 120 (Suppl. 1) (2011) S225-S237.

[180]

M.E. Meek, J.C. Lipscomb, Gaining acceptance for the use of in vitro toxicity assays and QIVIVE in regulatory risk assessment, Toxicology 332 (2015) 112-123.

[181]

R.D. Combes, In silico methods for toxicity prediction, Adv. Exp. Med. Biol. 745 (2012) 96-116.

[182]

A. Sutter, A. Amberg, S. Boyer, A. Brigo, J.F. Contrera, L.L. Custer, et al., Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities, Regul. Toxicol. Pharmacol. 67 (2013) 39-52.

[183]

B.A. Wetmore, J.F. Wambaugh, S.S. Ferguson, L. Li, , R.S. Judson, et al., Relative impact of incorporating pharmacokinetics on predicting in vivo hazard and mode of action from high-throughput in vitro toxicity assays, Toxicol. Sci. 132 (2013) 327-346.

[184]

P. Gribbon, A. Sewing, High-throughput drug discovery: what can we expect from HTS?, Drug Discov. Today 10 (2005) 17-22.

[185]

R. Macarron, Critical review of the role of HTS in drug discovery, Drug Discov. Today 11 (2006) 277-279.

[186]

K.A. Giuliano, R.L. DeBiasio, R.T. Dunlay, A. Gough, J.M. Volosky, J. Zock, et al., High-content screening: a new approach to easing key bottlenecks in the drug discovery process, J. Biomol. Screen. 2 (1997) 249-259.

[187]

O. Rausch, High content cellular screening, Curr. Opin. Chem. Biol. 10 (2006) 316-320.

[188]

P. Banerjee, B. Franz, A.K. Bhunia, Mammalian cell-based sensor system, Adv. Biochem. Eng. Biotechnol. 117 (2010) 21-55.

[189]

M. Xia, R. Huang, K.L. Witt, N. Southall, J. Fostel, M.H. Cho, et al., Compound cytotoxicity profiling using quantitative high-throughput screening, Environ. Health Perspect. 116 (2008) 284-291.

[190]

R. Huang, N. Southall, M.H. Cho, M. Xia, J. Inglese, C.P. Austin, Characterization of diversity in toxicity mechanism using in vitro cytotoxicity assays in quantitative high throughput screening, Chem. Res. Toxicol. 21 (2008) 659-667.

[191]

J. Gao, L.A. Garulacan, S.M. Storm, G.J. Opiteck, Y. Dubaquie, S.A. Hefta, et al., Biomarker discovery in biological fluids, Methods 35 (2005) 291-302.

[192]

G.W. Hergenroeder, J.B. Redell, A.N. Moore, P.K. Dash, Biomarkers in the clinical diagnosis and management of traumatic brain injury, Mol. Diagn. Ther. 12 (2008) 345-358.

[193]

J.A. Wagner, Strategic approach to fit-for-purpose biomarkers in drug development, Annu. Rev. Pharmacol. Toxicol. 48 (2008) 631-651.

[194]

D.L. Frederick, M.G. Bissell, Overview of progress in clinical toxicology testing, Clin. Lab. Med. 32 (2012) 353-359.

[195]

R. Stocker, Induction of haem oxygenase as a defense against oxidative stress, Free Radic. Res. Commun. 9 (1990) 101-112.

[196]

B. Ames, M. Shigenaga, T. Hagen, Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. U.S.A. 90 (1993) 7915-7922.

[197]

A.D. Corso, M. Cappiello, U. Mura, Thiol dependent oxidation of enzymes: the last chance against oxidative stress, Int. J. Biochem. Cell Biol. 26 (1994) 745-750.

[198]

R. Kroes, D. Muller, J. Lambe, M.R. Lowik, J. van Klaveren, J. Kleiner, et al., Assessment of intake from the diet, Food Chem. Toxicol. 40 (2002) 327-385.

[199]

L.C. Dolan, R.A. Matulka, G.A. Burdock, Naturally occurring food toxins, Toxins (Basel) 2 (2010) 2289-2332.

Publication history
Copyright
Rights and permissions

Publication history

Received: 18 February 2016
Revised: 05 May 2016
Accepted: 09 May 2016
Published: 14 June 2016
Issue date: September 2016

Copyright

© 2016 Beijing Academy of Food Sciences.

Rights and permissions

Return