AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A computational analysis on the impact of multilevel laryngotracheal stenosis on airflow and drug particle dynamics in the upper airway

Raluca E. Gosman1,2Ryan M. Sicard2Seth M. Cohen2Dennis O. Frank-Ito1,2,3,4( )
Duke University School of Medicine, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC 27708, USA
Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC 27708, USA
Computational Biology & Bioinformatics PhD Program, Duke University, Durham, NC 27708, USA
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
Show Author Information

Abstract

Laryngotracheal stenosis (LTS) is a type of airway narrowing that is frequently caused by intubation-related trauma. LTS can occur at one or multiple locations in the larynx and/or trachea. This study characterizes airflow dynamics and drug delivery in patients with multilevel stenosis. Two subjects with multilevel stenosis (S1 = glottis + trachea, S2 = glottis + subglottis) and one normal subject were retrospectively selected. Computed tomography scans were used to create subject-specific upper airway models. Computational fluid dynamics modeling was used to simulate airflow at inhalation pressures of 10, 25, and 40 Pa, and orally inhaled drug transport with particle velocities of 1, 5, and 10 m/s, and particle size range of 100 nm–40 µm. Subjects had increased airflow velocity and resistance at stenosis with decreased cross-sectional area (CSA): S1 had the smallest CSA at trachea (0.23 cm2) and resistance = 0.3 Pa·s/mL; S2 had the smallest CSA at glottis (0.44 cm2), and resistance = 0.16 Pa·s/mL. S1 maximal stenotic deposition was 4.15% at trachea; S2 maximal deposition was 2.28% at glottis. Particles of 11–20 µm had the greatest deposition, 13.25% (S1-trachea) and 7.81% (S2-subglottis). Results showed differences in airway resistance and drug delivery between subjects with LTS. Less than 4.2% of orally inhaled particles deposited at stenosis. Particle sizes with most stenotic deposition were 11–20 µm and may not represent typical particle sizes emitted by current-use inhalers.

References

 
Abbasidezfouli, A., Akbarian, E., Shadmehr, M. B., Arab, M., Javaherzadeh, M., Pejhan, S., Abbasi-Dezfouli, G., Farzanegan, R. 2009. The etiological factors of recurrence after tracheal resection and reconstruction in post-intubation stenosis. Interactive CardioVascular and Thoracic Surgery, 9: 446–449.
 
Alape, D., Singh, R., Folch, E., Fernandez Bussy, S., Agnew, A., Majid, A. 2020. Life-threatening multilevel airway stenosis due to myhre syndrome. American Journal of Respiratory and Critical Care Medicine, 201: 731–732.
 
Bitar, M. A., Al Barazi, R., Barakeh, R. 2017. Airway reconstruction: Review of an approach to the advanced-stage laryngotracheal stenosis. Brazilian Journal of Otorhinolaryngology, 83: 299–312.
 
Bouchikhi, A., Becquemin, M. H., Bignon, J., Roy, M., Teillac, A. 1988. Particle size study of nine metered dose inhalers, and their deposition probabilities in the airways. European Respiratory Journal, 1: 547–552.
 
Cheng, T., Carpenter, D., Cohen, S., Witsell, D., Frank-Ito, D. O. 2018. Investigating the effects of laryngotracheal stenosis on upper airway aerodynamics. The Laryngoscope, 128: E141–E149.
 
Crim, C., Holmes, M., Lee, B., Cavanaugh, R., Lincourt, W. 2005. Evaluation of particle size distribution of albuterol sulfate hydrofluoroalkane administered via metered-dose inhaler with and without valved holding chambers. Annals of Allergy, Asthma & Immunology, 94: 80–85.
 
D’Andrilli, A., Venuta, F., Rendina, E. A. 2016. Subglottic tracheal stenosis. Journal of Thoracic Disease, 8: S140–S147.
 
Dolovich, M. 1991. Measurement of particle size characteristics of metered dose inhaler (MDI) aerosols. Journal of Aerosol Medicine, 4: 251–263.
 
Elsayed, H. H., Moharram, A. A. 2021. Airway surgery for laryngotracheal stenosis during the COVID-19 pandemic: Institutional guidelines. Journal of Cardiothoracic and Vascular Anesthesia, 35: 3652–3658.
 
Esteller-Moré, E., Ibañez, J., Matiñó, E., Ademà, J. M., Nolla, M., Quer, I. M. 2005. Prognostic factors in laryngotracheal injury following intubation and/or tracheotomy in ICU patients. European Archives of Oto-Rhino-Laryngology and Head & Neck, 262: 880–883.
 
Fletcher, D. F., Chaugule, V., Gomes Dos Reis, L., Young, P. M., Traini, D., Soria, J. 2021. On the use of computational fluid dynamics (CFD) modelling to design improved dry powder inhalers. Pharmaceutical Research, 38: 277–288.
 
Fluent. 2017. ANSYS Fluent Theory Guide, Release 19.0. Ansys. In., Inc.
 
Frank, D. O., Kimbell, J. S., Cannon, D., Pawar, S. S., Rhee, J. S. 2012a. Deviated nasal septum hinders intranasal sprays: A computer simulation study. Rhinology, 50: 311–318.
 
Frank, D. O., Kimbell, J. S., Cannon, D., Rhee, J. S. 2013. Computed intranasal spray penetration: Comparisons before and after nasal surgery. International Forum of Allergy & Rhinology, 3: 48–55.
 
Frank, D. O., Kimbell, J. S., Pawar, S., Rhee, J. S. 2012b. Effects of anatomy and particle size on nasal sprays and nebulizers. Otolaryngology and Head and Neck Surgery, 146: 313–319.
 
Frank-Ito, D. O., Schulz, K., Vess, G., Witsell, D. L. 2015. Changes in aerodynamics during vocal cord dysfunction. Computers in Biology and Medicine, 57: 116–122.
 
Frank-Ito, D. O., Wofford, M., Schroeter, J. D., Kimbell, J. S. 2016. Influence of mesh density on airflow and particle deposition in sinonasal airway modeling. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 29: 46–56.
 
Frank-Ito, D. O., Cohen, S. M. 2021. Orally inhaled drug particle transport in computerized models of laryngotracheal stenosis. Otolaryngology–Head and Neck Surgery, 164: 829–840.
 
Gadkaree, S. K., Pandian, V., Best, S., Motz, K. M., Allen, C., Kim, Y., Akst, L., Hillel, A. T. 2017. Laryngotracheal stenosis: Risk factors for tracheostomy dependence and dilation interval. Otolaryngology–Head and Neck Surgery, 156: 321–328.
 
Gelbard, A., Anderson, C., Berry, L. D., Amin, M. R., Benninger, M. S., Blumin, J. H., Bock, J. M., Bryson, P. C., Castellanos, P. F., Chen, S. C., et al. 2020. Comparative treatment outcomes for patients with idiopathic subglottic stenosis. JAMA Otolaryngology–Head and Neck Surgery, 146: 20–29.
 
Gelbard, A., Donovan, D. T., Ongkasuwan, J., Nouraei, S. A. R., Sandhu, G., Benninger, M. S., Bryson, P. C., Lorenz, R. R., Tierney, W. S., Hillel, A. T., et al. 2016. Disease homogeneity and treatment heterogeneity in idiopathic subglottic stenosis. The Laryngoscope, 126: 1390–1396.
 
Gelbard, A., Francis, D. O., Sandulache, V. C., Simmons, J. C., Donovan, D. T., Ongkasuwan, J. 2015. Causes and consequences of adult laryngotracheal stenosis. The Laryngoscope, 125: 1137–1143.
 
Gelbard, A., Katsantonis, N. G., Mizuta, M., Newcomb, D., Rotsinger, J., Rousseau, B., Daniero, J. J., Edell, E. S., Ekbom, D. C., Kasperbauer, J. L., et al. 2017. Molecular analysis of idiopathic subglottic stenosis for Mycobacterium species. The Laryngoscope, 127: 179–185.
 
George, M., Lang, F., Pasche, P., Monnier, P. 2005. Surgical management of laryngotracheal stenosis in adults. European Archives of Oto-Rhino-Laryngology, 262: 609–615.
 
Gosman, R. E., Sicard, R. M., Cohen, S. M., Frank-Ito, D. O. 2023. Comparison of inhaled drug delivery in patients with one- and two-level laryngotracheal stenosis. The Laryngoscope, 133: 366–374.
 
Grillo, H. C., Mark, E. J., Mathisen, D. J., Wain, J. C. 1993. Idiopathic laryngotracheal stenosis and its management. The Annals of Thoracic Surgery, 56: 80–87.
 
Guardiani, E., Moghaddas, H. S., Lesser, J., Resta-Flarer, F., Blitzer, A., Bhora, F., Lebovics, R. 2015. Multilevel airway stenosis in patients with granulomatosis with polyangiitis (Wegener’s). American Journal of Otolaryngoly, 36: 361–363.
 
Günaydın, R. Ö., Süslü, N., Demir Bajin, M., Kuscu, O., Yılmaz, T., Ünal, Ö. F., Akyol, U. 2014. Endolaryngeal dilatation versus laryngotracheal reconstruction in the primary management of subglottic stenosis. International Journal of Pediatric Otorhinolaryngology, 78: 1332–1336.
 
Inthavong, K. 2020. From indoor exposure to inhaled particle deposition: A multiphase journey of inhaled particles. Experimental and Computational Multiphase Flow, 2: 59–78.
 
Inthavong, K., Chetty, A., Shang, Y., Tu, J. 2018. Examining mesh independence for flow dynamics in the human nasal cavity. Computers in Biology and Medicine, 102: 40–50.
 
Jović, R. M., Dragičević, D., Komazec, Z., Mitrović, S., Janjević, D., Gašić, J. 2012. Laryngotracheal stenosis and restenosis. What has the influence on the final outcome? European Archives of Oto-Rhino-Laryngol Head and Neck Surgery, 269: 1805–1811.
 
Keeler, J. A., Patki, A., Woodard, C. R., Frank-Ito, D. O. 2016. A computational study of nasal spray deposition pattern in four ethnic groups. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 29: 153–166.
 
Kelkar, P., Shah, R., Mahandru, J. P., Kasbekar, V. 2004. Management of laryngo-tracheal stenosis by Shiann - Yann Lee technique. Indian Journal of Otolaryngology and Head and Neck Surgery, 56: 1–4.
 
Kimbell, J. S., Basu, S., Garcia, G. J. M., Frank-Ito, D. O., Lazarow, F., Su, E., Protsenko, D., Chen, Z., Rhee, J. S., Wong, B. J. 2019. Upper airway reconstruction using long-range optical coherence tomography: Effects of airway curvature on airflow resistance. Lasers in Surgery and Medicine, 51: 150–160.
 
Kuźniar, T., Sleiman, C., Brugière, O., Groussard, O., Mal, H., Mellot, F., Pariente, R., Malolepszy, J., Fournier, M. 2000. Severe tracheobronchial stenosis in a patient with Crohn’s disease. European Respiratory Journal, 15: 209–212.
 
LeBelle, M., Pike, R. K., Graham, S. J., Ormsby, E. D., Bogard, H. A. 1996. Metered-dose inhalers I: Drug content and particle size distribution of beclomethasone dipropionate. Journal of Pharmaceutical and Biomedical Analysis, 14: 793–800.
 
Madariaga, M. L., Gaissert, H. A. 2016. Reresection for recurrent stenosis after primary tracheal repair. Journal of Thoracic Disease, 8: S153–S159.
 
Maldonado, F., Loiselle, A., DePew, Z. S., Edell, E. S., Ekbom, D. C., Malinchoc, M., Hagen, C. E., Alon, E., Kasperbauer, J. L. 2014. Idiopathic subglottic stenosis: An evolving therapeutic algorithm. The Laryngoscope, 124: 498–503.
 
McCaffrey, T. V. 1993. Management of laryngotracheal stenosis on the basis of site and severity. Otolaryngology–Head and Neck Surgery, 109: 468–473.
 
Miwa, M., Nakajima, M., Kaszynski, R. H., Hamada, S., Nakano, T., Shirokawa, M., Goto, H., Yamaguchi, Y. 2021. Two cases of post-intubation laryngotracheal stenosis occurring after severe COVID-19. Internal Medicine, 60: 473–477.
 
Morén, F. 1981. Studies on pressurized aerosols for oral inhalation. Acta Pharmceutica Suecica, 18: 63.
 
Parker, N. P., Bandyopadhyay, D., Misono, S., Goding Jr., G. S. 2013. Endoscopic cold incision, balloon dilation, mitomycin C application, and steroid injection for adult laryngotracheal stenosis. The Laryngoscope, 123: 220–225.
 
Rosow, D. E., Barbarite, E. 2016. Review of adult laryngotracheal stenosis: Pathogenesis, management, and outcomes. Current Opinion in Otolaryngology & Head and Neck Surgery, 24: 489–493.
 
Rosow, D. E., Ahmed, J. 2017. Initial experience with low-dose methotrexate as an adjuvant treatment for rapidly recurrent nonvasculitic laryngotracheal stenosis. JAMA Otolaryngology–Head & Neck Surgery, 143: 125–130.
 
Sandu, K. 2021. Laryngotracheal complications in intubated COVID-19 patients. Clinical Medicine Insights: Case Reports, 14: 11795476211020590.
 
Scholfield, D. W., Warner, E., Ahmed, J., Ghufoor, K. 2021. Subglottic and tracheal stenosis associated with coronavirus disease 2019. The Journal of Laryngology & Otology, 135: 656–658.
 
Shang, Y. D., Inthavong, K., Tu, J. Y. 2015. Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Computers & Fluids, 114: 141–150.
 
Sinacori, J. T., Taliercio, S. J., Duong, E., Benson, C. 2013. Modalities of treatment for laryngotracheal stenosis: The EVMS experience. The Laryngoscope, 123: 3131–3136.
 
Vasanthan, R., Sorooshian, P., Shanmuganathan, V. S., Al-Hashim, M. 2021. Laryngotracheal stenosis following intubation and tracheostomy for COVID-19 pneumonia: A case report. Journal of Surgical Case Reports, 2021: rjaa569.
 
Wain, J. C. 2003. Postintubation tracheal stenosis. Chest Surgery Clinics of North America, 13: 231–246.
 
Wofford, M. R., Kimbell, J. S., Frank-Ito, D. O., Dhandha, V., McKinney, K. A., Fleischman, G. M., Ebert Jr., C. S., Zanation, A. M., Senior, B. A. 2015. A computational study of functional endoscopic sinus surgery and maxillary sinus drug delivery. Rhinology, 53: 41–48.
 
Woliansky, J., Paddle, P., Phyland, D. 2021. Laryngotracheal stenosis management: A 16-year experience. Ear, Nose & Throat Journal, 100: 360–367.
 
Yung, K. C., Chang, J., Courey, M. S. 2020. A randomized controlled trial of adjuvant mitomycin-c in endoscopic surgery for laryngotracheal stenosis. The Laryngoscope, 130: 706–711.
Experimental and Computational Multiphase Flow
Pages 235-246
Cite this article:
Gosman RE, Sicard RM, Cohen SM, et al. A computational analysis on the impact of multilevel laryngotracheal stenosis on airflow and drug particle dynamics in the upper airway. Experimental and Computational Multiphase Flow, 2023, 5(3): 235-246. https://doi.org/10.1007/s42757-022-0151-9

400

Views

2

Crossref

2

Web of Science

2

Scopus

Altmetrics

Received: 22 June 2022
Revised: 31 August 2022
Accepted: 24 November 2022
Published: 18 March 2023
© Tsinghua University Press 2023
Return