Abe, K., Kondoh, T., Nagano, Y. 1994. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I. Flow fields calculations. International Journal of Heat and Mass Transfer, 37: 139–151.
Abe, K., Kondoh, T., Nagano, Y. 1995. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—II. Thermal field calculations. International Journal of Heat and Mass Transfer, 38(8): 1467–1481.
Bagshaw, M., Illig, P. 2019. The aircraft cabin environment. In: Travel Medicine. Elsevier: 429–436.
Buonanno, G., Morawska, L., Stabile, L. 2020a. Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environment International, 145: 106112.
Buonanno, G., Stabile, L., Morawska, L. 2020b. Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environment International, 141: 105794.
Chan, A. T. 2003. Commuter exposure and indoor–outdoor relationships of carbon oxides in buses in Hong Kong. Atmospheric Environment, 37(27): 3809–3815.
Chan, L. Y., Lau, W. L., Zou, S. C., Cao, Z. X., Lai, S. C. 2002. Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China. Atmospheric Environment, 36(38): 5831–5840.
Da Silva, S. J. R., de Lima, S. C., da Silva, R. C., Kohl, A., Pena, L. 2021. Viral load in COVID-19 patients: Implications for prognosis and vaccine efficacy in the context of emerging SARS-CoV-2 variants. Frontiers in Medicine, 8: 836826.
Fanger, P. O. 1973. Thermal Comfort. New York: McGraw-Hill Inc.
Fiala, D. 1998. Dynamic simulation of human heat transfer and thermal comfort. Sustainable Development, 45: 1–237.
Foat, T. G., Parker, S. T., Castro, I. P., Xie, Z. T. 2018. Numerical investigation into the structure of scalar plumes in a simple room. Journal of Wind Engineering and Industrial Aerodynamics, 175: 252–263.
Guevara Luna, F. A., Guevara Luna, M. A., Belalcázar Cerón, L. C. 2019. CFD modeling and validation of tracer gas dispersion to evaluate self-pollution in school buses. Asian Journal of Atmospheric Environment, 13(1): 1–10.
Gupta, J. K., Lin, C. H., Chen, Q. 2009. Flow dynamics and characterization of a cough. Indoor Air, 19(6): 517–525.
Ito, K. 2016. Toward the development of an in silico human model for indoor environmental design. Proceedings of the Japan Academy Series B, Physical and Biological Sciences, 92(7): 185–203.
Ito, K. 2017. In silico human model for fluid-initiated indoor environmental design. Indoor and Built Environment, 26(3): 295–297.
Ito, K., Inthavong, K., Kurabuchi, T., Ueda, T., Endo, T., Omori, T., Ono, H., Kato, S., Sakai, K., Suwa, Y., et al. 2015a. CFD benchmark tests for indoor environmental problems: Part 1 isothermal/ non-isothermal flow in 2D and 3D room model. International Journal of Architectural Engineering Technology, 2(1): 1–22.
Ito, K., Inthavong, K., Kurabuchi, T., Ueda, T., Endo, T., Omori, T., Ono, H., Kato, S., Sakai, K., Suwa, Y., et al. 2015b. CFD benchmark tests for indoor environmental problems: Part 2 cross-ventilation airflows and floor heating systems. International Journal of Architectural Engineering Technology, 2(1): 23–49.
Ito, K., Inthavong, K., Kurabuchi, T., Ueda, T., Endo, T., Omori, T., Ono, H., Kato, S., Sakai, K., Suwa, Y., et al. 2015c. CFD benchmark tests for indoor environmental problems: Part 3 numerical thermal manikins. International Journal of Architectural Engineering Technology, 2(1): 50–75.
Ito, K., Inthavong, K., Kurabuchi, T., Ueda, T., Endo, T., Omori, T., Ono, H., Kato, S., Sakai, K., Suwa, Y., et al. 2015d. CFD benchmark tests for indoor environmental problems: Part 4 air-conditioning airflows, residential kitchen airflows and fire-induced flow. International Journal of Architectural Engineering Technology, 2(1): 76–102.
Kato, S., Murakami, S. 1988. New ventilation efficiency scales based on spatial distribution of contaminant concentration aided by numerical simulation. ASHRAE Transactions, 94: 309–330.
Kobayashi, H., Kato, S., Murakami, S. 1998. Scales for evaluating ventilation efficiency as affected by supply and exhaust openings based on spatial distribution of contaminant by means of numerical dimulation. Transactions-Society of Heating Air Conditioning and Sanitary Engineers of Japan, 23(68): 29–36.
Kobayashi, Y., Tanabe, S. I. 2013. Development of JOS-2 human thermoregulation model with detailed vascular system. Building and Environment, 66: 1–10.
Kuga, K., Wargocki, P., Ito, K. 2022. Breathing zone and exhaled air re-inhalation rate under transient conditions assessed with a computer-simulated person. Indoor Air, 32(2): e13003.
Li, C., Ito, K. 2014. Numerical and experimental estimation of convective heat transfer coefficient of human body under strong forced convective flow. Journal of Wind Engineering and Industrial Aerodynamics, 126: 107–117.
Nicas, M., Nazaroff, W. W., Hubbard, A. 2005. Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens. Journal of Occupational and Environmental Hygiene, 2(3): 143–154.
Nielsen, P. V. 2015. Fifty years of CFD for room air distribution. Building and Environment, 91: 78–90.
Pan, Y., Zhang, D., Yang, P., Poon, L. L. M., Wang, Q. 2020. Viral load of SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases, 20(4): 411–412.
Praml, G., Schierl, R. 2000. Dust exposure in Munich public transportation: A comprehensive 4-year survey in buses and trams. International Archives of Occupational and Environmental Health, 73(3): 209–214.
Puhach, O., Adea, K., Hulo, N., Sattonnet, P., Genecand, C., Iten, A., Jacquérioz, F., Kaiser, L., Vetter, P., Eckerle, I., Meyer, B. 2022. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nature Medicine, 28(7): 1491–1500.
Redrow, J., Mao, S. L., Celik, I., Posada, J. A., Feng, Z. G. 2011. Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough. Building and Environment, 46(10): 2042–2051.
Roy, C. J. 2003. Grid convergence error analysis for mixed-order numerical schemes. AIAA Journal, 41(4): 595–604.
Shang, Y. D., Dong, J. L., Tian, L., He, F. J., Tu, J. Y. 2022. An improved numerical model for epidemic transmission and infection risks assessment in indoor environment. Journal of Aerosol Science, 162: 105943.
Shek, K. W., Chan, W. T. 2008. Combined comfort model of thermal comfort and air quality on buses in Hong Kong. Science of the Total Environment, 389(2–3): 277–282.
Shinohara, N., Tatsu, K., Kagi, N., Kim, H., Sakaguchi, J., Ogura, I., Murashima, Y., Sakurai, H., Naito, W. 2022. Air exchange rates and advection–diffusion of CO2 and aerosols in a route bus for evaluation of infection risk. Indoor Air, 32(3): e13019.
Smith, C. E. 1991. A transient, three-dimensional model of the human thermal system. Ph.D. Thesis. Kansas State University.
Sørensen, D. N., Nielsen, P. V. 2003. Quality control of computational fluid dynamics in indoor environments. Indoor Air, 13(1): 2–17.
Wang, C., Yoo, S. J., Ito, K. 2020. Does detailed hygrothermal transport analysis in respiratory tract affect skin surface temperature distributions by thermoregulation model? Advances in Building Energy Research, 14(4): 450–470.
Xie, X., Li, Y., Sun, H., Liu, L. 2009. Exhaled droplets due to talking and coughing. Journal of the Royal Society Interface, 6(Suppl_6): S703–S714.
Yan, Y. H., Li, X. D., Ito, K. 2020. Numerical investigation of indoor particulate contaminant transport using the Eulerian–Eulerian and Eulerian–Lagrangian two-phase flow models. Experimental and Computational Multiphase Flow, 2(1): 31–40.
Yoo, S. J., Ito, K. 2018a. Assessment of transient inhalation exposure using in silico human model integrated with PBPK–CFD hybrid analysis. Sustainable Cities and Society, 40: 317–325.
Yoo, S. J., Ito, K. 2018b. Numerical prediction of tissue dosimetry in respiratory tract using computer simulated person integrated with physiologically based pharmacokinetic–computational fluid dynamics hybrid analysis. Indoor and Built Environment, 27(7): 877–889.
Yoo, S., Ito, K. 2020. Multi-stage optimization of local environmental quality by comprehensive computer simulated person as a sensor for HVAC control. Advances in Building Energy Research, 14(2): 171–188.
Zhu, S. W., Demokritou, P., Spengler, J. 2010. Experimental and numerical investigation of micro-environmental conditions in public transportation buses. Building and Environment, 45(10): 2077–2088.