AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Prediction of transport, deposition, and resultant immune response of nasal spray vaccine droplets using a CFPD–HCD model in a 6-year-old upper airway geometry to potentially prevent COVID-19

Hamideh Hayati1Yu Feng1( )Xiaole Chen2Emily Kolewe3Catherine Fromen3
School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
Show Author Information

Abstract

This study focuses on the transport, deposition, and triggered immune response of intranasal vaccine droplets to the angiotensin-converting-enzyme-2-rich region, i.e., the olfactory region (OR), in the nasal cavity of a 6-year-old female to possibly prevent corona virus disease 19 (COVID-19). To investigate how administration strategy can influence nasal vaccine efficiency, a validated multi-scale model, i.e., computational fluid–particle dynamics (CFPD) and host-cell dynamics (HCD) model, was employed. Droplet deposition fraction, size change, residence time, and the area percentage of OR covered by the vaccine droplets, and triggered immune system response were predicted with different spray cone angles, initial droplet velocities, and compositions. Numerical results indicate that droplet initial velocity and composition have negligible influences on the vaccine delivery efficiency to OR. In contrast, the spray cone angle can significantly impact the vaccine delivery efficiency. The triggered immunity was not significantly influenced by the administration investigated in this study due to the low percentage of OR area covered by the droplets. To enhance the effectiveness of the intranasal vaccine to prevent COVID-19 infection, it is necessary to optimize the vaccine formulation and administration strategy so that the vaccine droplets can cover more epithelial cells in OR to minimize the number of available receptors for SARS-CoV-2.

References

 
Asgharian, B. 2004. A model of deposition of hygroscopic particles in the human lung. Aerosol Science and Technology, 38: 938–947.
 
Baccam, P., Beauchemin, C., Macken, C. A., Hayden, F. G., Perelson, A. S. 2006. Kinetics of influenza A virus infection in humans. Journal of Virology, 80: 7590–7599.
 
Bird, R. B., Stewart, W. E., Lightfoot, E. N., Spalding, D. B. 1960. Transport phenomena. Journal of Applied Mechanics, 28: 317–318.
 
Bleier, B. S., Ramanathan, M., Lane, A. P. 2021. COVID-19 vaccines may not prevent nasal SARS-CoV-2 infection and asymptomatic transmission. Otolaryngology—Head and Neck Surgery, 164: 305–307.
 
Brechtel, F. J., Kreidenweis, S. M. 2000. Predicting particle critical supersaturation from hygroscopic growth measurements in the humidified TDMA. Part I: Theory and sensitivity studies. Journal of the Atmospheric Sciences, 57: 1854–1871.
 
Broday, D. M., Georgopoulos, P. G. 2001. Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Science and Technology, 34: 144–159.
 
Butler, S. E., Crowley, A. R., Natarajan, H., Xu, S., Weiner, J. A., Bobak, C. A., Mattox, D. E., Lee, J., Wieland-Alter, W., Connor, R. I., et al. 2021. Distinct features and functions of systemic and mucosal humoral immunity among SARS-CoV-2 convalescent individuals. Front Immunol, 11: 618685.
 
Calmet, H., Inthavong, K., Eguzkitza, B., Lehmkuhl, O., Houzeaux, G., Vázquez, M. 2019. Nasal sprayed particle deposition in a human nasal cavity under different inhalation conditions. PLoS One, 14: e0221330.
 
Chavda, V. P., Vora, L. K., Pandya, A. K., Patravale, V. B. 2021. Intranasal vaccines for SARS-CoV-2: From challenges to potential in COVID-19 management. Drug Discovery Today, 26: 2619–2636.
 
Chen, M., Shen, W., Rowan, N. R., Kulaga, H., Hillel, A., Ramanathan, M. Jr., Lane, A. P. 2020. Elevated ACE-2 expression in the olfactory neuroepithelium: Implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. European Respiratory Journal, 56: 2001948.
 
Chen, X., Feng, Y., Zhong, W., Kleinstreuer, C. 2017. Numerical investigation of the interaction, transport and deposition of multicomponent droplets in a simple mouth-throat model. Journal of Aerosol Science, 105: 108–127.
 
El Golli, S., Bricard, J., Turpin, P. Y., Treiner, C. 1974. The evaporation of saline droplets. Journal of Aerosol Science, 5: 273–292.
 
Ferron, G. A., Upadhyay, S., Zimmermann, R., Karg, E. 2013. Model of the deposition of aerosol particles in the respiratory tract of the rat. II. Hygroscopic particle deposition. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 26: 101–119.
 
Flaherty, S. 2021. Children could be dangerous carriers of virus. Available at https://finchannel.com/children-could-be-dangerous-carriers-of-virus/.
 
Fleming, S., Thompson, M., Stevens, R., Heneghan, C., Plüddemann, A., Maconochie, I., Tarassenko, L., Mant, D. 2011. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies. Lancet, 377: 1011–1018.
 
Glezen, W. P. 2001. The new nasal spray influenza vaccine. Journal of Pediatric Infectious Diseases, 20: 731–732.
 
Haghnegahdar, A., Zhao, J., Feng, Y. 2019. Lung aerosol dynamics of airborne influenza A virus-laden droplets and the resultant immune system responses: An in silico study. Journal of Aerosol Science, 134: 34–55.
 
Hassan, A. O., Kafai, N. M., Dmitriev, I. P., Fox, J. M., Smith, B. K., Harvey, I. B., Chen, R. E., Winkler, E. S., Wessel, A. W., Case, J. B., et al. 2020. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell, 183: 169–184.
 
Hayati, H., Feng, Y., Hinsdale, M. 2021. Inter-species variabilities of droplet transport, size change, and deposition in human and rat respiratory systems: An in silico study. Journal of Aerosol Science, 154: 105761.
 
Hayati, H., Soltani Goharrizi, A., Salmanzadeh, M., Ahmadi, G. 2019. Numerical modeling of particle motion and deposiiton in turbulent wavy channel flows. Scientia Iranica, 26: 2229–2240.
 
Hou, Y. J., Okuda, K., Edwards, C. E., Martinez, D. R., Asakura, T., Dinnon, K. H., Kato, T., Lee, R. E., Yount, B. L., Mascenik, T. M., et al. 2020. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell, 182: 429–446.
 
Inthavong, K., Tian, Z. F., Li, H. F., Tu, J. Y., Yang, W., Xue, C. L., Li, C. G. 2006. A numerical study of spray particle deposition in a human nasal cavity. Aerosol Science and Technology, 40: 1034–1045.
 
Inthavong, K., Tian, Z. F., Tu, J. Y., Yang, W., Xue, C. 2008. Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics. Computers in Biology and Medicine, 38: 713–726.
 
Kapadia, M., Grullo, P. E. R., Tarabichi, M. 2019. Comparison of short nozzle and long nozzle spray in sinonasal drug delivery: A cadaveric study. Ear, Nose & Throat Journal, 98: E97–E103.
 
Kiaee, M., Wachtel, H., Noga, M. L., Martin, A. R., Finlay, W. H. 2018. Regional deposition of nasal sprays in adults: A wide ranging computational study. International Journal of Numerical Methods in Biomedical Engineering, 34: e2968.
 
Kitaoka, H. 2011. A 4D model generator of the human lung. Forma, 26: 19–24.
 
Kolanjiyil, A. V., Alfaifi, A., Aladwani, G., Golshahi, L., Longest, W. 2022. Importance of spray-wall interaction and post-deposition liquid motion in the transport and delivery of pharmaceutical nasal sprays. Pharmaceutics, 14: 956.
 
Koomen, E., Nijman, J., Nieuwenstein, B., Kappen, T. 2021. Tidal volume in pediatric ventilation: Do You get what you see? Journal of Clinical Medicine, 11: 98.
 
Krammer, F. 2020. SARS-CoV-2 vaccines in development. Nature, 586: 516–527.
 
Kreidenweis, S. M., Koehler, K., DeMott, P. J., Prenni, A. J., Carrico, C., Ervens, B. 2005. Water activity and activation diameters from hygroscopicity data - Part I: Theory and application to inorganic salts. Atmospheric Chemistry and Physics, 5: 1357–1370.
 
Lee, H. Y., Topham, D. J., Park, S. Y., Hollenbaugh, J., Treanor, J., Mosmann, T. R., Jin, X., Ward, B. M., Miao, H., Holden-Wiltse, J., et al. 2009. Simulation and prediction of the adaptive immune response to influenza A virus infection. Journal of Virology, 83: 7151–7165.
 
Li, H., Kuga, K., Khoa, N. D., Ito, K. 2021. Effects of initial conditions and parameters on the prediction of SARS-CoV-2 viral load in the upper respiratory tract based on host-cell dynamics. In: Proceedings of International Exchange and Innovation Conference on Engineering & Science Interdisciplinary Graduate School of Engineering Sciences, 7: 155–160.
 
Long, Q. X., Liu, B. Z., Deng, H. J., Wu, G. C., Deng, K., Chen, Y. K., Liao, P., Qiu, J. F., Lin, Y., Cai, X. F., et al. 2020. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nature Medicine, 26: 845–848.
 
Longest, P. W., Xi, J. 2008. Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Aerosol Science and Technology, 42: 579–602.
 
Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., Völker, S. 2006. A correlation-based transition model using local variables—Part I: Model formulation. Journal of Turbomachinery, 128: 413.
 
Moakes, R. J. A., Davies, S. P., Stamataki, Z., Grover, L. M. 2021. Formulation of a composite nasal spray enabling enhanced surface coverage and prophylaxis of SARS-COV-2. Advanced Materials, 33: e2008304.
 
Morrison, N. A., Talashek, T. A., Yu, H., Raczkowski, R. 2020. Gellan gum products and methods of manufacture and use thereof. U.S. Patent No. 10,638,783. Washington, DC: U.S. Patent and Trademark Office.
 
Pan, Y., Zhang, D., Yang, P., Poon, L. L. M., Wang, Q. 2020. Viral load of SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases, 20: 411–412.
 
Parham, P. 2014. The Immune System. USA: Garland Science.
 
Pawelek, K. A., Dor, D., Salmeron, C., Handel, A. 2016. Within-host models of high and low pathogenic influenza virus infections: The role of macrophages. PLoS One, 11: e0150568.
 
Perry, R. H., Green, D. W., Maloney, J. O. 1984. Perry’s Chemical Engineers’ Handbook. New York: McGraw-Hill.
 
Pilicheva, B., Boyuklieva, R. 2021. Can the nasal cavity help tackle COVID-19? Pharmaceutics, 13: 1612.
 
Rygg, A., Hindle, M., Longest, P. W. 2016. Linking suspension nasal spray drug deposition patterns to pharmacokinetic profiles: A proof-of-concept study using computational fluid dynamics. Journal of Pharmaceutical Sciences, 105: 1995–2004.
 
Saffman, P. G. 1965. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22: 385–400.
 
Sungnak, W., Huang N., Bécavin C., Berg M., Queen R., Litvinukova M., Talavera-López C., Maatz H., Reichart D., Sampaziotis F., et al. 2020. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 26: 681–687.
 
Tong, X., Dong, J., Shang, Y., Inthavong, K., Tu, J. 2016. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity. Computers in Biology and Medicine, 77: 40–48.
 
Vaidya, N. K., Bloomquist, A., Perelson, A. S. 2021. Modeling within-host dynamics of SARS-CoV-2 infection: A case study in ferrets. Viruses, 13: 1635.
 
Whitaker, S. 1972. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE Journal, 18: 361–371.
 
Xi, J., Lei, L. R., Zouzas, W., April Si, X. 2021. Nasally inhaled therapeutics and vaccination for COVID-19: Developments and challenges. MedComm, 2: 569–586.
 
Zare, F., Aalaei, E., Zare, F., Faramarzi, M., Kamali, R. 2022. Targeted drug delivery to the inferior meatus cavity of the nasal airway using a nasal spray device with angled tip. Computer Methods and Programs Biomedicine, 221: 106864.
Experimental and Computational Multiphase Flow
Pages 272-289
Cite this article:
Hayati H, Feng Y, Chen X, et al. Prediction of transport, deposition, and resultant immune response of nasal spray vaccine droplets using a CFPD–HCD model in a 6-year-old upper airway geometry to potentially prevent COVID-19. Experimental and Computational Multiphase Flow, 2023, 5(3): 272-289. https://doi.org/10.1007/s42757-022-0145-7

315

Views

1

Crossref

2

Web of Science

2

Scopus

Altmetrics

Received: 21 June 2022
Revised: 13 August 2022
Accepted: 26 August 2022
Published: 19 January 2023
© Tsinghua University Press 2023
Return