AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

CFD validation of condensation heat transfer in scaled-down small modular reactor applications, Part 1: Pure steam

Palash Kumar BhowmikJoshua Paul Schlegel( )Varun KalraSyed Bahauddin AlamSungje HongShoaib Usman
Department of Nuclear Engineering and Radiation Science, Missouri University of Science and Technology, 1201 N. State St., Rolla, MO 65409, USA
Show Author Information

Abstract

This study presented the state-of-the-art computational fluid dynamics (CFD) validation and scaling of the condensation heat transfer (CHT) models for passive containment cooling system (PCCS) of the small modular reactor (SMR). The STAR-CCM+ software with real 3D computational domains was used to validate the condensation models with a preliminary assessment of pure steam scaling performance. The boundary and appropriate physics conditions from the test data were applied. The condensation was modeled using the condensation-seed parameter as a source term for mass, momentum, and energy conservation equations. A small percentage of air (within 1%) was considered in the test section; hence, multi-component gas models were used. The implicit-unsteady numerical solver was applied to improve numerical stability. Mesh size, run time (duration), and time step sensitivity analyses were applied to obtain optimized simulation results. The test fluid parameters—temperature (at bulk steam-mixture, bulk coolant, inner and outer tube walls), condensation film thickness, mass fraction, and heat flux—were utilized to validate the CFD simulations. Finally, Nusselt number (Nu), as the dimensionless number heat transfer, was calculated for diameter scaled-up and scaled-down geometries. The heat transfer coefficient and Nu values were compared to evaluate the scalability performance of CHT models.

References

 
Ahmed, F., Ara, N., Deshpande, V., Mollah, A. S., Bhowmik, P. K. 2021a. CFD validation with optimized mesh using benchmarking data of pebble-bed high-temperature reactor. Prog Nucl Energ, 134: 103653.
 
Ahmed, F., Abir, M. A., Bhowmik, P. K., Deshpande, V., Mollah, A. S., Kumar, D., Alam, S. 2021b. Computational assessment of thermo- hydraulic performance of Al2O3–water nanofluid in hexagonal rod-bundles subchannel. Prog Nucl Energ, 135: 103700.
 
Alamgir, M. D., Aritomi, M., Banoori, S., Atique, M., Bylov, I., Choi, S., Garcia, M., Gimenez, M., Grinberg, M., Hidayatullah, H., et al. 2016. Design safety considerations for water-cooled small modular reactor incorporating lessons learned from the Fukushima Daiichi accident. In: IAEA Tecdoc Series. Vienna, Austria: International Atomic Energy Agency.
 
Ambrosini, W., Forgione, N., Merli, F., Oriolo, F., Paci, S., Kljenak, I., Kostka, P., Vyskocil, L., Travis, J. R., Lehmkuhl, J., et al. 2014. Lesson learned from the SARNET wall condensation benchmarks. Ann Nucl Energy, 74: 153–164.
 
Bestion, D., D’Auria, F., Lien, P., Nakamura, H. 2016. A state- of-the-art report on scaling in system thermal-hydraulics applications to nuclear safety and design. Technical Report. Nuclear Energy Agency, USA.
 
Bhowmik, P. K. 2016. Nanofluid operation and valve engineering of super for small unit passive enclosed reactor. Ph.D. Dissertation. Seoul National University Graduate School, Seoul, Republic of Korea.
 
Bhowmik, P. K., Shamim, J. A., Chen, X., Suh, K. Y. 2021a. Rod bundle thermal-hydraulics experiment with water and water–Al2O3 nanofluid for small modular reactor. Ann Nucl Energy, 150: 107870.
 
Bhowmik, P. K., Schlegel, J. P., Kalra, V., Mills, C., Usman, S. 2021b. Design of condensation heat transfer experiment to evaluate scaling distortion in small modular reactor safety analysis. J Nucl Eng Radiat Sci, 7: 031406.
 
Bhowmik, P. K., Schlegel, J., Kalra, V., Alam, S., Hong, S., Usman, S. 2021c. CFD validation of condensation heat transfer in scaled-down small modular reactor applications, Part 2: Steam and non-condensable gas. Exp Comput Multiph Flow, .
 
Bhowmik, P. K., Suh, K. Y. 2021. Flow mapping using 3D full-scale CFD simulation and hydrodynamic experiments of an ultra- supercritical turbine’s combined valve for nuclear power plant. Int J Energy Environ Eng, .
 
Bradley, K. 2013. NEAMS: The nuclear energy advanced modeling and simulation program. Technical Report. Argonne National Lab., USA.
 
Bragg-Sitton, S., Ingersoll, D., Carelli, M. 2015. Handbook of Small Modular Nuclear Reactors. Sawston, Cambridge: Woodhead Publishing.
 
Dehbi, A., Janasz, F., Bell, B. 2013. Prediction of steam condensation in the presence of non-condensable gases using a CFD-based approach. Nucl Eng Des, 258: 199–210.
 
Donnelly, D. A., Otto, R. T., Mathews, C. E., Wilson, B. A., Schanfein, M. J. 2020. IAEA design information verification authorities for small modular reactors: Potential challenges and solutions. Report No. PNNL-SA-143682, Seattle, WA, USA.
 
Fu, W., Li, X., Wu, X., Corradini, M. L. 2016. Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube. Nucl Eng Des, 297: 197–207.
 
Hasan, F., Mahmud, K. A. H., Khan, M. I., Patil, S., Dennis, B. H., Adnan, A. 2021. Cavitation induced damage in soft biomaterials. Multiscale Sci Eng, 3: 67–87.
 
IEA. 2019. Information available at https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system. Accessed 30 Apr 2020.
 
Juhn, P. E., Kupitz, J., Cleveland, J., Cho, B., Lyon, R. B. 2000. IAEA activities on passive safety systems and overview of international development. Nucl Eng Des, 201: 41–59.
 
Kalra, V. 2017. CFD validation and scaling of condensation heat transfer. M.S. Dissertation. Missouri University of Science and Technology, Rolla, MS, USA.
 
Khan, M. I., Billah, M. M., Rahman, M. M., Hasan, M. N. 2017. Mixed convection heat transfer simulation in a rectangular channel with a variable speed rotational cylinder. AIP Conf Proc, 1919: 020048.
 
Kothe, D. B. 2010. CASL: The consortium for advanced simulation of light water reactors. B Am Phys Soc, 55.https://meetings.aps.org/Meeting/DPP10/Session/CM11.4.
 
Kuhn, S. Z. 1995. Investigation of heat transfer from condensing steam-gas mixtures and turbulent films flowing downward inside a vertical tube. Ph.D. Dissertation. University of California, Berkeley, USA.
 
Lee, H., Kharangate, C. R., Mascarenhas, N., Park, I., Mudawar, I. 2015. Experimental and computational investigation of vertical downflow condensation. Int J Heat Mass Tran, 85: 865–879.
 
Lee, S. W., Baek, W. P., Chang, S. H. 1997. Assessment of passive containment cooling concepts for advanced pressurized water reactors. Ann Nucl Energy, 24: 467–475.
 
Li, J. 2013. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers. Int J Heat Mass Tran, 57: 708–721.
 
Mahaffy, J., Chung, B., Dubois, F., Ducros, F., Graffard, E., Heitsch, M., Henriksson, M., Komen, E., Moretti, F., Morii, T., et al. 2007. Best practice guidelines for the use of CFD in nuclear reactor safety applications. Technical Report. Nuclear Energy Agency, USA.
 
Poinssot, C., Bourg, S., Ouvrier, N., Combernoux, N., Rostaing, C., Vargas-Gonzalez, M., Bruno, J. 2014. Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles. Energy, 69: 199–211.
 
Punetha, M., Khandekar, S. 2017. A CFD based modelling approach for predicting steam condensation in the presence of non- condensable gases. Nucl Eng Des, 324: 280–296.
 
Ravva, S. R., Iyer, K. N., Gupta, S. K., Gaikwad, A. J. 2014. Implementation and validation of the condensation model for containment hydrogen distribution studies. Nucl Eng Des, 270: 34–47.
 
Saha, S., Khan, J., Farouk, T. 2020. Numerical study of evaporation assisted hybrid cooling for thermal power plant application. Appl Therm Eng, 166: 114677.
 
Santinello, M., Ricotti, M. 2019. Long-term decay heat removal in a submerged SNR. Ann Nucl Energy, 131: 39–50.
 
Shamim, J. A., Bhowmik, P. K., Chen X., Suh, K. Y. 2016. A new correlation for convective heat transfer coefficient of water- alumina nanofluid in a square array subchannel under PWR condition. Nucl Eng Des, 308: 194–204.
 
Sharma, S. L., Ishii, M., Hibiki, T., Schlegel, J. P., Liu, Y., Buchanan, J. R. 2019. Beyond bubbly two-phase flow investigation using a CFD three-field two-fluid model. Int J Multiph Flow, 113: 1–15.
 
Sovacool, B. K., Ramana, M. V. 2015. Back to the future: Small modular reactors, nuclear fantasies, and symbolic convergence. Sci Technol Hum Values, 40: 96–125.
 
Su, J., Sun, Z., Fan, G., Ding, M. 2013. Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface. Nucl Eng Des, 262: 201–208.
 
Wang, X., Chang, H., Corradini, M. 2016. A CFD study of wave influence on film steam condensation in the presence of non- condensable gas. Nucl Eng Des, 305: 303–313.
 
Yadav, M. K., Khandekar, S., Sharma, P. K. 2016. An integrated approach to steam condensation studies inside reactor containments: A review. Nucl Eng Des, 300: 181–209.
 
Yeoh, G. H. 2019. Thermal hydraulic considerations of nuclear reactor systems: Past, present and future challenges. Exp Comput Multiph Flow, 1: 3–27.
 
Yuann, R. Y. 1993. Condensation from vapor-gas mixture for forced downflow inside a tube. Ph.D. Dissertation. University of California, Berkeley, CA, USA.
 
Zhang, Y. P., Niu, S. P., Zhang, L. T., Qiu, S. Z., Su, G. H., Tian, W. X. 2015. A review on analysis of LWR severe accident. J Nucl Eng Radiat Sci, 1: 041018.
 
Zschaeck, G., Frank, T., Burns, A. D. 2014. CFD modelling and validation of wall condensation in the presence of non-condensable gases. Nucl Eng Des, 279: 137–146.
Experimental and Computational Multiphase Flow
Pages 409-423
Cite this article:
Bhowmik PK, Schlegel JP, Kalra V, et al. CFD validation of condensation heat transfer in scaled-down small modular reactor applications, Part 1: Pure steam. Experimental and Computational Multiphase Flow, 2022, 4(4): 409-423. https://doi.org/10.1007/s42757-021-0115-5

761

Views

6

Crossref

7

Web of Science

8

Scopus

Altmetrics

Received: 20 January 2021
Revised: 26 April 2021
Accepted: 04 June 2021
Published: 26 August 2021
© Tsinghua University Press 2021
Return