Journal Home > Volume 2 , Issue 3

Venturi-type bubble generators own advantages of simplicity in structure, high efficiency, low power consumption, and high reliability, exhibiting a broad application potential in various fields. This work presents a literature review of recent progress in the research concerning Venturi-type bubble generators, with a focus on the performance evaluation, bubble transportation, and breakup mechanisms. Experimental studies employing flow visualization techniques have played an important role in exploring the bubble transportation and breakup phenomena, which is vitally necessary for clarifying the bubble breakup mechanisms and understanding the working principle and performance of a Venturi channel as a bubble generator. A summarization was carried out on both experimental and theoretical work concerning parameters influencing the bubble breakup and the performance of Venturi-type bubble generators. Based on the geometric parameter optimization combined with appropriate flow conditions, it is expected that Venturi-type bubble generators can produce bubbles with controllable size and concentration to satisfy the application requirements, while a further work is required to illustrate the interaction between the liquid and gas bubbles.


menu
Abstract
Full text
Outline
About this article

A review on bubble generation and transportation in Venturi-type bubble generators

Show Author's information Jiang HuangLicheng Sun( )Hongtao Liu( )Zhengyu MoJiguo TangGuo XieMin Du
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China

Abstract

Venturi-type bubble generators own advantages of simplicity in structure, high efficiency, low power consumption, and high reliability, exhibiting a broad application potential in various fields. This work presents a literature review of recent progress in the research concerning Venturi-type bubble generators, with a focus on the performance evaluation, bubble transportation, and breakup mechanisms. Experimental studies employing flow visualization techniques have played an important role in exploring the bubble transportation and breakup phenomena, which is vitally necessary for clarifying the bubble breakup mechanisms and understanding the working principle and performance of a Venturi channel as a bubble generator. A summarization was carried out on both experimental and theoretical work concerning parameters influencing the bubble breakup and the performance of Venturi-type bubble generators. Based on the geometric parameter optimization combined with appropriate flow conditions, it is expected that Venturi-type bubble generators can produce bubbles with controllable size and concentration to satisfy the application requirements, while a further work is required to illustrate the interaction between the liquid and gas bubbles.

Keywords: performance, Venturi-type bubble generator, bubble transportation, bubble breakup mechanism

References(86)

Agarwal, A., Ng, W. J., Liu, Y. 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84: 1175-1180.
Ahmadi, R., Khodadadi, D. A., Abdollahy, M., Fan, M. M. 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. Int J Min Sci Technol, 24: 559-566.
Ahmadpour, A., Noori Rahim Abadi, S. M. A., Kouhikamali, R. 2016. Numerical simulation of two-phase gas-liquid flow through gradual expansions/contractions. Int J Multiphase Flow, 79: 31-49.
Akhtar, M. S., Rajesh, M., Ciji, A., Sharma, P., Kamalam, B. S., Patiyal, R. S., Singh, A. K., Sarma, D. 2018. Photo-thermal manipulations induce captive maturation and spawning in endangered golden mahseer (Tor putitora): A silver-lining in the strangled conservation efforts of decades. Aquaculture, 497: 336-347.
Ali, M., Yan, C. Q., Sun, Z. N., Gu, H. F., Mehboob, K. 2013. Dust particle removal efficiency of a Venturi scrubber. Ann Nucl Energy, 54: 178-183.
Baawain, M. S., Gamal El-Din, M., Clarke, K., Smith, D. W. 2007. Impinging-jet ozone bubble column modeling: Hydrodynamics, gas hold-up, bubble characteristics, and ozone mass transfer. Ozone: Science & Engineering, 29: 245-259.
Bagatur, T. 2014. Evaluation of plant growth with aerated irrigation water using venturi pipe part. Arab J Sci Eng, 39: 2525-2533.
Bal, M., Reddy, T. T., Meikap, B. C. 2019. Removal of HCl gas from off gases using self-priming Venturi scrubber. J Hazard Mater, 364: 406-418.
Balamurugan, S., Lad, M. D., Gaikar, V. G., Patwardhan, A. W. 2007. Hydrodynamics and mass transfer characteristics of gas-liquid ejectors. Chem Eng J, 131: 83-103.
Basso, A., Hamad, F. A., Ganesan, P. 2018. Effects of the geometrical configuration of air-water mixer on the size and distribution of microbubbles in aeration systems. Asia-Pac J Chem Eng, 13: e2259.
Bauer, W. G., Fredrickson, A. G., Tsuchiya, H. M. 1963. Mass transfer characteristics of Venturi liquid-gas contactor. Ind Eng Chem Process Des Dev, 2: 178-187.
Briens, C. L., Huynh, L. X., Large, J. F., Catros, A., Bernard, J. R., Bergougnou, M. A. 1992. Hydrodynamics and gas-liquid mass transfer in a downward Venturi-bubble column combination. Chem Eng Sci, 47: 3549-3556.
Cramers, P. H. M. R., Beenackers, A. A. C. M. 2001. Influence of the ejector configuration, scale and the gas density on the mass transfer characteristics of gas-liquid ejectors. Chem Eng J, 82: 131-141.
Dahrazma, B., Naghedinia, A., Gorji, H. G., Saghravani, S. F. 2019. Morphological and physiological responses of Cucumis sativus L. to water with micro-nanobubbles. J Agr Sci Tech, 21: 181-192.
Fujikawa, S., Zhang, R. S., Hayama, S., Peng, G. Y. 2003. The control of micro-air-bubble generation by a rotational porous plate. Int J Multiphase Flow, 29: 1221-1236.
Fujiwara, A., Okamoto, K., Hashiguchi, K., Peixinho, J., Takagi, S., Matsumoto, Y. 2007. Bubble breakup phenomena in a Venturi tube. In: Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference: FEDSM2007-37243.
DOI
Fujiwara, A., Takagi, S., Watanabe, K., Matsumoto, Y. 2003. Experimental study on the new micro-bubble generator and its application to water purification system. In: Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, Honolulu: FEDSM2003-45162.
DOI
Gabbard, C. H. 1972. Development of a Venturi type bubble generator for use in the molten-salt reactor xenon removal system. Office of Scientific and Technical Information: ORNL-TM-4122.
DOI
Gordiychuk, A., Svanera, M., Benini, S., Poesio, P. 2016. Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator. Exp Therm Fluid Sci, 70: 51-60.
Gourich, B., El Azher, N., Vial, C., Soulami, M. B., Ziyad, M., Zoulalian, A. 2007. Influence of operating conditions and design parameters on hydrodynamics and mass transfer in an emulsion loop-venturi reactor. Chem Eng Process, 46: 139-149.
Gourich, B., Soulami, M. B., Zoulalian, A., Ziyad, M. 2005. Simultaneous measurement of gas hold-up and mass transfer coefficient by tracer dynamic technique in “Emulsair” reactor with an emulsion- venturi distributor. Chem Eng sci, 60: 6414-6421.
Gulhane, N. P., Landge, A. D., Shukla, D. S., Kale, S. S. 2015. Experimental study of iodine removal efficiency in self-priming Venturi scrubber. Ann Nucl Energy, 78: 152-159.
Hashim, A., Yaakob, O. B., Koh, K. K., Ismail, N., Ahmed, Y. M. 2015. Review of micro-bubble ship resistance reduction methods and the mechanisms that affect the skin friction on drag reduction from 1999 to 2015. J Teknologi, 74: 105-114.
Havelka, P., Linek, V., Sinkule, J., Zahradnık, J., Fialova, M. 2000. Hydrodynamic and mass transfer characteristics of ejector loop reactors. Chem Eng Sci, 55: 535-549.
Huang, J., Sun, L. C., Du, M., Liang, Z., Mo, Z. Y., Tang, J. G., Xie, G. 2019a. An investigation on the performance of a micro-scale Venturi bubble generator. Chem Eng J, .
Huang, J., Sun, L. C., Du, M., Mo, Z. Y., Zhao, L. 2018. A visualized study of interfacial behavior of air-water two-phase flow in a rectangular Venturi channel. Theor Appl Mech Lett, 8: 334-344.
Huang, J., Sun, L. C., Mo, Z. Y., Liu, H. T., Du, M., Tang, J. G., Bao, J. J. 2019b. A visualized study of bubble breakup in small rectangular Venturi channels. Exp Comput Multiph Flow, 1: 177-185.
Huynh, L. X., Briens, C. L., Large, J. F., Catros, A., Bernard, J. R., Bergougnou, M. A. 1991. Hydrodynamics and mass transfer in an upward Venturi/bubble column combination. Can J Chem Eng, 69: 711-722.
Ishii, R., Umeda, Y., Murata, S., Shishido, N. 1993. Bubbly flows through a converging-diverging nozzle. Phys Fluid Fluid Dynam, 5: 1630-1643.
Jackson, M. L. 1964. Aeration in Bernoulli types of devices. AIChE J, 10: 836-842.
Kandakure, M. T., Gaikar, V. G., Patwardhan, A. W. 2005. Hydrodynamic aspects of ejectors. Chem Eng Sci, 60: 6391-6402.
Kaneko, A., Gong, X., Takagi, S., Matsumoto, Y. 2012. Development of microbubble generator and its utilization to enhance the mass transfer in the bubble plumes and columns. In: Proceedings of the ASME 2012 Fluids Engineering Summer Meeting: FEDSM2012-72097.
DOI
Kawamura, T., Fujiwara, A., Takahashi, T., Kato, H., Matsumoto, Y., Kodama, Y. 2004. The effects of the bubble size on the bubble dispersion and skin friction reduction. In: Proceedings of the 5th Symposium on Smart Control of Turbulence: 145-151.
Kaya, Y., Bacaksiz, A. M., Bayrak, H., Gönder, Z. B., Vergili, I., Hasar, H., Yilmaz, G. 2017. Treatment of chemical synthesis-based pharmaceutical wastewater in an ozonation-anaerobic membrane bioreactor (AnMBR) system. Chem Eng J, 322: 293-301.
Kayaalp, N., Ozturkmen, G. 2016. A Venturi device reduces membrane fouling in a submerged membrane bioreactor. Water Sci Technol, 74: 147-156.
Kowe, R., Hunt, J. C. R., Hunt, A., Couet, B., Bradbury, L. J. S. 1988. The effects of bubbles on the volume fluxes and the pressure gradients in unsteady and non-uniform flow of liquids. Int J Multiphase Flow, 14: 587-606.
Kress, T. S. 1972. Mass transfer between small bubbles and liquids in cocurrent turbulent pipeline flow. Office of Scientific and Technical Information: ORNL-TM-3718.
DOI
Krusong, W., Yaiyen, S., Pornpukdeewatana, S. 2015. Impact of high initial concentrations of acetic acid and ethanol on acetification rate in an internal Venturi injector bioreactor. J Appl Microbiol, 118: 629-640.
Kuo, J. T. 1978. Flow of bubbles through nozzles. Ph.D. Thesis. Dartmouth College, New Hampshire.
Kuo, J. T., Wallis, G. B. 1988. Flow of bubbles through nozzles. Int J Multiphase Flow, 14: 547-564.
Lee, C. H., Choi, H., Jerng, D. W., Kim, D. E., Wongwises, S., Ahn, H. S. 2019. Experimental investigation of microbubble generation in the Venturi nozzle. Int J Heat Mass Tran, 136: 1127-1138.
Li, J. J., Song Y. C., Yin, J. L., Wang, D. Z. 2017. Investigation on the effect of geometrical parameters on the performance of a Venturi type bubble generator. Nucl Eng Des, 325: 90-96.
Li, X. L., Ma, X. W., Zhang, L., Zhang, H. C. 2016. Dynamic characteristics of ventilated bubble moving in micro scale venturi. Chem Eng Process, 100: 79-86.
Liao, Y. X., Lucas, D. 2009. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem Eng Sci, 64: 3389-3406.
Magnaudet, J., Rivero, M., Fabre, J. 1995. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J Fluid Mech, 284: 97-135.
Majid, A. I., Nugroho, F. M., Juwana, W. E., Budhijanto, W., Deendarlianto, Indarto. 2018. On the performance of venturi-porous pipe microbubble generator with inlet angle of 20° and outlet angle of 12°. AIP Conference Proceedings, 2001: 050009.
Mansour, M., Kováts, P., Wunderlich, B., Thévenin, D. 2018. Experimental investigations of a two-phase gas/liquid flow in a diverging horizontal channel. Exp Therm Fluid Sci, 93: 210-217.
Mills, C. S. L., Schlegel, J. P. 2019a. Interfacial area measurement with new algorithm for grouping bubbles by diameter. Exp Comput Multiph Flow, 1: 61-72.
Mills, C., Schlegel, J. P. 2019b. Comparison of data processing algorithm performance for optical and conductivity void probes. Exp Comput Multiph Flow, .
Mitra, S., Daltrophe, N. C., Gilron, J. 2016. A novel eductor-based MBR for the treatment of domestic wastewater. Water Res, 100: 65-79.
Nakatake, Y., Kisu, S., Shigyo, K., Eguchi, T., Watanabe, T. 2013. Effect of nano air-bubbles mixed into gas oil on common-rail diesel engine. Energy, 59: 233-239.
Nomura, Y., Uesawa, S., Kaneko, A., Abe, Y. 2011. Study on bubble breakup mechanism in a Venturi tube. In: Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: AJK2011-10024.
DOI
Onari, H., Saga, T., Watanabe, K., Maeda, K., Matsuo, K. 1999. High functional characteristics of micro-bubbles and water purification. Resour Process, 46: 238-244. (in Japanese).
Poh, P. E., Ong, W. Y. J., Lau, E. V., Chong, M. N. 2014. Investigation on micro-bubble flotation and coagulation for the treatment of anaerobically treated palm oil mill effluent (POME). J Environ Chem Eng, 2: 1174-1181.
Reay, D., Ratcliff, G. A. 1973. Removal of fine particles from water by dispersed air flotation: Effects of bubble size and particle size on collection efficiency. Can J Chem Eng, 51: 178-185.
Reichmann, F., Koch, M. J., Kockmann, N. 2017b. Investigation of bubble breakup in laminar, transient, and turbulent regime behind micronozzles. In: Proceedings of the ASME 2017 15th International Conference on Nanochannels, Microchannels, and Minichannels: ICNMM2017-5540.
DOI
Reichmann, F., Tollkötter, A., Körner, S., Kockmann, N. 2017c. Gas-liquid dispersion in micronozzles and microreactor design for high interfacial area. Chem Eng Sci, 169: 151-163.
Reichmann, F., Varel, F., Kockmann, N. 2017a. Energy optimization of gas-liquid dispersion in micronozzles assisted by design of experiment. Processes, 5: 57.
Reis, A. S., Barrozo, M. A. S. 2016. A study on bubble formation and its relation with the performance of apatite flotation. Sep Purif Technol, 161: 112-120.
Rodrigues, R. T., Rubio, J. 2003. New basis for measuring the size distribution of bubbles. Miner Eng, 16: 757-765.
Rodrigues, R. T., Rubio, J. 2007. DAF-dissolved air flotation: Potential applications in the mining and mineral processing industry. Int J Miner Process, 82: 1-13.
Sadatomi, M., Kawahara, A., Kano, K., Ohtomo, A. 2005. Performance of a new micro-bubble generator with a spherical body in a flowing water tube. Exp Therm Fluid Sci, 29: 615-623.
Sadatomi, M., Kawahara, A., Matsuura, H., Shikatani, S. 2012. Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube. Exp Therm Fluid Sci, 41: 23-30.
Sandhu, N., Jameson, G. J. 1979. An experimental study of choked foam flows in a convergent-divergent nozzle. Int J Multiphase Flow, 5: 39-58.
Sharma, D., Patwardhan, A., Ranade, V. 2018. Effect of turbulent dispersion on hydrodynamic characteristics in a liquid jet ejector. Energy, 164: 10-20.
Song, Y. C., Wang, D. Z., Yin, J. L., Li, J. J., Cai, K. B. 2019. Experimental studies on bubble breakup mechanism in a venturi bubble generator. Ann Nucl Energy, 130: 259-270.
Soubiran, J., Sherwood, J. D. 2000. Bubble motion in a potential flow within a Venturi. Int J Multiphase Flow, 26: 1771-1796.
Sparrow, E. M., Abraham, J. P., Minkowycz, W. J. 2009. Flow separation in a diverging conical duct: Effect of Reynolds number and divergence angle. Int J Heat Mass Tran, 52: 3079-3083.
Sun, L. C., Mo, Z. Y., Zhao, L., Liu, H. T., Guo, X., Ju, X. F., Bao, J. J. 2017. Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR. Ann Nucl Energy, 109: 69-81.
Terasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S., Kobayashi, D. 2011. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem Eng Sci, 66: 3172-3179.
Uesawa, S.-I., Kaneko, A., Nomura, Y., Abe, Y. 2011. Fluctuation of void fraction in the microbubble generator with a Venturi tube. In: Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: AJK2011-10014.
DOI
Uesawa, S.-I., Kaneko, A., Nomura, Y., Abe, Y. 2012. Study on bubble breakup behavior in a Venturi tube. Multiphase Sci Tech, 24: 257-277.
Unyaphan, S., Tarnpradab, T., Takahashi, F., Yoshikawa, K. 2017. Improvement of tar removal performance of oil scrubber by producing syngas microbubbles. Appl Energy, 205: 802-812.
Van der Geld, C. W. M., van Wingaarden, H., Brand, B. A. 2001. Experiments on the effect of acceleration on the drag of tapwater bubbles. Exp Fluids, 31: 708-722.
Wang, Y. C., Chen, E. 2002. Effects of phase relative motion on critical bubbly flows through a converging-diverging nozzle. Phys Fluids, 14: 3215-3223.
Wilkinson, P. M., van Schayk, A., Spronken, J. P. M., van Dierendonck, L. L. 1993. The influence of gas density and liquid properties on bubble breakup. Chem Eng Sci, 48: 1213-1226.
Wu, Z. H., Chen, H. B., Dong, Y. M., Mao, H. L., Sun, J. L., Chen, S. F., Craig, V. S. J., Hu, J. 2008. Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles. J Colloid Interf Sci, 328: 10-14.
Xu, Q. Y., Nakajima, M., Ichikawa, S., Nakamura, N., Shiina, T. 2008. A comparative study of microbubble generation by mechanical agitation and sonication. Innov Food Sci Emerg, 9: 489-494.
Yin, J. L., Li, J. J., Li, H., Liu, W., Wang, D. Z. 2015. Experimental study on the bubble generation characteristics for a Venturi type bubble generator. Int J Heat Mass Transf, 91: 218-224.
Yoshida, A., Takahashi, O., Ishii, Y., Sekimoto, Y., Kurata, Y. 2008. Water purification using the adsorption characteristics of microbubbles. Jpn J Appl Phys, 47: 6574-6577.
Zahradnik, J., Fialová, M., Linek, V., Sinkule, J., Řezníčková, J., Kaštánek, F. 1997. Dispersion efficiency of ejector-type gas distributors in different operating modes. Chem Eng Sci, 52: 4499-4510.
Zhao, L., Mo, Z. Y,,Sun, L. C., Xie, G., Liu, H. T., Du, M., Tang. J. G. 2017. A visualized study of the motion of individual bubbles in a Venturi-type bubble generator. Prog Nucl Energ, 97: 74-89.
Zhao, L., Sun, L. C., Mo, Z. Y., Du, M., Huang, J., Bao, J. J., Tang, J. G., Xie, G. 2019. Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles. Int J Multiphase Flow, 114: 192-206.
Zhao, L., Sun, L. C., Mo, Z. Y., Tang, J. G., Hu, L. Y., Bao, J. J. 2018. An investigation on bubble motion in liquid flowing through a rectangular Ventutri channel. Exp Therm Fluid Sci, 97: 48-58.
Zhou, H., Smith, D. W. 2000. Ozone mass transfer in water and wastewater treatment: Experimental observations using a 2D laser particle dynamics analyzer. Water Res, 34: 909-921.
Zhou, Y. M., Sun, Z. N., Gu, H. F., Miao, Z. 2016. Performance of iodide vapour absorption in the Venturi scrubber working in self-priming mode. Ann Nucl Energy, 87: 426-434.
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 August 2019
Revised: 07 September 2019
Accepted: 08 September 2019
Published: 15 November 2019
Issue date: September 2020

Copyright

© Tsinghua University Press 2019

Acknowledgements

The authors are profoundly grateful to the financial supports of the National Natural Science Foundation of China (Grant Nos. 51706149, 51709191, 51606130) and Sichuan Science and Technology Program (Grant No. 19ZX0148Z090101001).

Return