AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

A review of pebble flow study for pebble bed high temperature gas-cooled reactor

Shengyao Jiang1Jiyuan Tu1,2Xingtuan Yang1Nan Gui1( )
Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China
School of Engineering, RMIT University, Melbourne, VIC 3083, Australia
Show Author Information
An erratum to this article is available online at:

Abstract

The pebble bed high temperature gas-cooled reactor is a promising generation-IV reactor, which uses large fuel pebbles and helium gas as coolant. The pebble bed flow is a fundamental issue for both academic investigation and engineering application, e.g., reactor core design and safety analysis. This work performed a review of recent progress on pebble flow study, focusing on the important issues like pebble flow, gas phase hydrodynamics, and inter-phase heat transfer (thermal hydraulics). Our group’s researches on pebble flow have also been reviewed through the aspects of phenomenological observation and measurement, voidage distribution, geometric and parameter optimization, pebble flow mechanisms, flow regime categorization, and fundamentals of modelings of pebble flow and radiation. Finally, the major problems or possible directions of research are concluded which would be some of our focuses on the pebble bed flow study.

References

 
Abdulmohsin, R. S., Al-Dahhan, M. H. 2015. Characteristics of convective heat transport in a packed pebble-bed reactor. Nucl Eng Des, 284: 143–152.
 
Abdulmohsin, R. S., Al-Dahhan, M. H. 2016. Axial dispersion and mixing phenomena of the gas phase in a packed pebble-bed reactor. Ann Nucl Energy, 88: 100–111.
 
Abou-Sena, A., Arbeiter, F., Boccaccini, L. V., Rey, J., Schlindwein, G. 2013. Experimental study and analysis of the purge gas pressure drop across the pebble beds for the fusion HCPB blanket. Fusion Eng Des, 88: 243–247.
 
Abou-Sena, A., Arbeiter, F., Boccaccini, L. V., Schlindwein, G. 2014. Measurements of the purge helium pressure drop across pebble beds packed with lithium orthosilicate and glass pebbles. Fusion Eng Des, 89: 1459–1463.
 
Ades, M. J., Peddicord, K. L. 1982. A model for effective thermal conductivity of unrestructured sphere-pac fuel. Nucl Sci Eng, 81: 540–550.
 
Al Falahi, F., Mueller, G., Al-Dahhan, M. 2018. Pebble bed nuclear reactor structure study: A comparison of the experimental and calculated void fraction distribution. Prog Nucl Energ, 106: 153–161.
 
Amini, N., Hassan, Y. A. 2014. Experimental study of bypass flow in near wall gaps of a pebble bed reactor using hot wire anemometry technique. Ann Nucl Energ, 65: 60–71.
 
Bauer, R., Schluender, E. U. 1978. Effective radial thermal conductivity of packings in gas flow, part II: Thermal conductivity of the packing fraction without gas flow. Int Chem Eng, 18: 189–204.
 
Bäumer, R. 1990. AVR: Experimental High-Temperature Reactor: 21 Years of Successful Operation for A Future Energy Technology. The Association of German Engineers (VDI), the Soc for Energy Technologies, VDI-Verlag GmbH, Düsseldorf.
 
Boer, B., Kloosterman, J. L., Lathouwers, D., van der Hagen, T. H. J. J. 2009. In-core fuel management optimization of pebble-bed reactors. Ann Nucl Energy, 36: 1049–1058.
 
Chen, H., Fu, L. 2014. Investigation on the pebble bed flow model in VSOP. Nucl Eng Des, 271: 352–355.
 
Chen, L. S., Lee, J. 2017. Experimental analysis of the thermal field and heat transfer characteristics of a pebble-bed core in a high-temperature gas-cooled reactor. Ann Nucl Energ, 110: 338–348.
 
Chen, L., Chen, Y. H., Huang, K., Liu, S. L. 2016. Investigation of effective thermal conductivity for pebble beds by one-way coupled CFD-DEM method for CFETR WCCB. Fusion Eng Des, 106: 1–8.
 
Chen, L., Ma, X. B., Cheng, X. M., Jiang, K. C., Huang, K., Liu, S. L. 2015. Theoretical modeling of the effective thermal conductivity of the binary pebble beds for the CFETR-WCCB blanket. Fusion Eng Des, 101: 148–153.
 
Chen, Y. H., Chen, L., Liu, S. L., Luo, G. N. 2017a. Flow characteristics analysis of purge gas in unitary pebble beds by CFD simulation coupled with DEM geometry model for fusion blanket. Fusion Eng Des, 114: 84–90.
 
Chen, Z. P., Chen, X. M., Zheng, Y. H., Sun, J., Chen, F. B., Shi, L., Li, F., Dong, Y. J., Zhang, Z. Y. 2017b. Air ingress analysis of chimney effect in the 200 MWe pebble-bed modular high temperature gas-cooled reactor. Ann Nucl Energy, 106: 143–153.
 
De Beer, M., du Toit, C. G., Rousseau, P. G. 2017. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect. Nucl Eng Des, 314: 67–81.
 
Ebara, S., Yokomine, T., Shimizu, A., Hashizume, H. 2010. Numerical simulation of turbulent flow in microscopic pore scale of pebble bed by large-eddy simulation. Fusion Eng Des, 85: 1638–1641.
 
Ferng, Y. M., Lin, K. Y. 2013. Investigating effects of BCC and FCC arrangements on flow and heat transfer characteristics in pebbles through CFD methodology. Nucl Eng Des, 258: 66–75.
 
Flownex. 2010. http://www.flownex.com.
 
Greyvenstein, G., Rousseau, P., Nicholls, D. 2003. Design and successful testing of a physical model of the pebble bed modular reactor. Int J Nucl Power, 2: 105–110.
 
Gui, N., Yang, X. T., Jiang, S. Y., Tu, J. Y. 2016a. A soft-sphere-imbedded pseudo-hard-particle model for simulation of discharge flow of brick particles. AIChE J, 62: 3562–3574.
 
Gui, N., Yang, X. T., Jiang, S. Y., Tu, J. Y., Fan, J. R. 2016b. Extended HPM-DEM coupled simulation of drainage of square particles in a 2D hopper flow. AIChE J, 62: 1863–1876.
 
Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2014. Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor. Nucl Eng Des, 270: 295–301.
 
Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016c. A generalized particle-to-wall collision model for non-spherical rigid particles. Adv Powder Technol, 27: 154–163.
 
Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016d. An extension of hard-particle model for three-dimensional non-spherical particles: Mathematical formulation and validation. Appl Math Model, 40: 2485–2499.
 
Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016e. Effects of rocking frequency and amplitude on particle discharge in rocking bed: A DEM study. Powder Technol, 292: 31–45.
 
Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2017a. Effect of roundness on the discharge flow of granular particles. Powder Technol, 314: 140–147.
 
Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2017b. Flow fields and packing states in the discharge flow of noncircular particles: A SIPHPM simulation. Particuology, 35: 10–21.
 
Hansen, U., Schulten, R., Teuchert, E. 1972. Physical properties of the “once through then out” pebble-bed reactor. Nucl Sci Eng, 47: 132–139.
 
Hao, C., Chen, Y. Y., Guo, J., Wang, L. D., Li, F. 2018. Mechanism analysis of the contribution of nuclear data to the keff uncertainty in the pebble bed HTR. Ann Nucl Energy, 120: 857–868.
 
Hassan, Y. A., Dominguez-Ontiveros, E. E. 2008. Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques. Nucl Eng Des, 238: 3080–3085.
 
Ho, H. Q., Obara, T. 2016. Design concept for a small pebble bed reactor with ROX fuel. Ann Nucl Energy, 87: 471–478.
 
International Atomic Energy Agency (IAEA). 2001. Current status and future development of modular high temperature gas cooled reactor technology. IAEA-TECDOC-1198.
 
Jia, X. L., Gui, N., Wu, H., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2017a. Numerical study and analysis of the effects of recirculation flow rates in drained pebble flow. Powder Technol, 314: 608–619.
 
Jia, X. L., Gui, N., Yang, X. T., Tu, J. Y., Jia, H. J., Jiang, S. Y. 2017b. Experimental study of flow field characteristics on bed configurations in the pebble bed reactor. Ann Nucl Energy, 102: 1–10.
 
Jia, X. L., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016. Experimental study and analysis of velocity correlation and intermittency of very slow and dense pebble flow in a silo bed. Nucl Eng Des, 305: 626–638.
 
Jia, X. L., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2017c. Fluctuation and arching formation of very dense and slow pebble flow in a silo bed. J Nucl Sci Technol, 54: 111–126.
 
Jiang, S. Y., Yang, X. T., Tang, Z. W., Wang, W. J., Tu, J. Y., Liu, Z. Y., Li, J. 2012. Experimental and numerical validation of a two-region-designed pebble bed reactor with dynamic core. Nucl Eng Des, 246: 277–285.
 
Kadak, A. C. 2005. A future for nuclear energy: Pebble bed reactors. Int J Critical Infrastructures, 1: 330–345.
 
Keppler, I. 2013. Failure analysis of pebble bed reactors during earthquake by discrete element method. Nucl Eng Des, 258: 102–106.
 
Khane, V., Said, I. A., Al-Dahhan, M. H. 2016a. Experimental investigation of pebble flow dynamics using radioactive particle tracking technique in a scaled-down Pebble Bed Modular Reactor (PBMR). Nucl Eng Des, 302: 1–11.
 
Khane, V., Taha, M. M., Al-Dahhan, M. H. 2016b. Experimental investigation of the overall residence time of pebbles in a pebble bed reactor (PBR) using radioactive pebble. Prog Nucl Energ, 93: 267–276.
 
Kim, M. H., Lim, H. S., Lee, W. J. 2009. Computational fluid dynamics assessment of the local hot core temperature in a pebble-bed type very high temperature reactor. J Eng Gas Turb Power, 131: 012905.
 
Kim, S. H., Kim, H. C., Kim, J. K., Noh, J. M. 2013. A study on evaluation of pebble flow velocity with modification of the kinematic model for pebble bed reactor. Ann Nucl Energy, 55: 322–330.
 
Kloosterman, J. L. 2003. Application of boron and gadolinium burnable Poison particles in UO2 and PUO2 fuels in HTRs. Ann Nucl Energy, 30: 1807–1819.
 
Koster, A., Matzner, H. D., Nicholsi, D. R. 2003. PBMR design for the future. Nucl Eng Des, 222: 231–245.
 
Laguerre, O., Ben Amara, S., Alvarez, G., Flick, D. 2008. Transient heat transfer by free convection in a packed bed of spheres: Comparison between two modelling approaches and experimental results. Appl Therm Eng, 28: 14–24.
 
Latifi, M. S., du Toit, C. G. 2019. A numerical study to investigate the effect of inlet Reynolds number on the thermal-fluid phenomena in the supercritical carbon dioxide-cooled pebble bed reactor. Arab J Sci Eng, 44: 981–991.
 
Lee, J. J., Park, G. C., Kim, K. Y., Lee, W. J. 2007a. Numerical treatment of pebble contact in the flow and heat transfer analysis of a pebble bed reactor core. Nucl Eng Des, 237: 2183–2196.
 
Lee, J. J., Yoon, S. J., Park, G. C., Lee, W. J. 2007b. Turbulence-induced heat transfer in PBMR core using LES and RANS. J Nucl Sci Technol, 44: 985–996.
 
Lee, J. Y., Lee, S. Y. 2009. Flow visualization in the scaled up pebble bed of high temperature gas-cooled reactor using particle image velocimetry method. J Eng Gas Turb Power, 131: 064502.
 
Li, H., Qiu, S. Z., Zhang, Y. J., Su, G. H., Tian, W. X. 2012. Thermal hydraulic investigations with different fuel diameters of pebble bed water cooled reactor in CFD simulation. Ann Nucl Energ, 42: 135–147.
 
Li, Y. H., Ji, W. 2013. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems. Nucl Eng Des, 258: 275–283.
 
Li, Y. J., Jia, B., Zhang, S., Wang, X. L. 2017. Study on the mechanical behaviors and elastic modulus of mixed fusion pebble beds. Fusion Eng Des, 121: 356–360.
 
Li, Y., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2015. Effect of wall structure on pebble stagnation behavior in pebble bed reactor. Ann Nucl Energy, 80: 195–202.
 
Li, Y., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016a. Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor. Nucl Eng Des, 300: 495–505.
 
Li, Y., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016b. Effect of friction on pebble flow pattern in pebble bed reactor. Ann Nucl Energy, 94: 32–43.
 
Li, Y., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016c. Numerical study of gravity-driven dense granular flows on flow behavior characterization. Powder Technol, 297: 144–152.
 
Li, Y., Xu, Y., Jiang, S. 2009. DEM simulations and experiments of pebble flow with monosized spheres. Powder Technol, 193: 312–318.
 
Liu, H. B., Du, D., Han, Z. D., Chang, B. H., Pan, J. L., Shen, P. 2017. Pneumatic transportation pattern of fuel pebbles in a pebble-bed reactor. Ann Nucl Energy, 99: 434–443.
 
Liu, H. B., Du, D., Han, Z. D., Zou, Y. R., Pan, J. L. 2015. Dynamic analysis and application of fuel elements pneumatic transportation in a pebble bed reactor. Energy, 79: 33–39.
 
Liu, H. B., Du, D., Shen, P., Chang, B. H., Zhang, W. Z., Pan, J. L. 2018. Research on flow field characteristics and force analysis of fuel elements pneumatic transportation in a pebble bed reactor. Ann Nucl Energy, 111: 568–578.
 
Lo Frano, R., Aquaro, D., Pupeschi, S., Moscardini, M. 2014. Thermo-mechanical test rig for experimental evaluation of thermal conductivity of ceramic pebble beds. Fusion Eng Des, 89: 1309–1313.
 
Lo Frano, R., Aquaro, D., Scaletti, L. 2016. Thermo-mechanical characterization of ceramic pebbles for breeding blanket. Fusion Eng Des, 109–111: 383–388.
 
Lohnert, G. H. 1990. Technical design features and essential safety-related properties of the HTR-module. Nucl Eng Des, 121: 259–275.
 
Luo, X., Li, X., Yu, S. 2010. Nuclear graphite friction properties and the influence of friction properties on the pebble bed. Nucl Eng Des, 240: 2674–2681.
 
McCabe, W. L., Smith, J. C., Harriott, P. 1985. Unit Operations of Chemical Engineering. New York: McGraw-Hill.
 
Nedderman, R. M., Tüzün, U. 1979. A kinematic model for the flow of granular materials. Powder Technol, 22: 243–253.
 
Nicholls, D. R. 2000. Status of the pebble bed modular reactor. Nucl Energ, 39: 231–236.
 
Northrup, M. A., Kulp, T. J., Angel, S. M. 1991. Fluorescent particle image velocimetry: Application to flow measurement in refractive index-matched porous media. Appl Opt, 30: 3034.
 
Northrup, M. A., Kulp, T. J., Angel, S. M., Pinder, G. F. 1993. Direct measurement of interstitial velocity field variations in a porous medium using fluorescent-particle image velocimetry. Chem Eng Sci, 48: 13–21.
 
Pupeschi, S., Knitter, R., Kamlah, M. 2017. Effective thermal conductivity of advanced ceramic breeder pebble beds. Fusion Eng Des, 116: 73–80.
 
Reimann, J., Abou-Sena, A., Nippen, R., Tafforeau, P. 2013. Pebble bed packing in prismatic containers. Fusion Eng Des, 88: 2343–2347.
 
Rycroft, C. H., Dehbi, A., Lind, T., Güntay, S. 2013. Granular flow in pebble-bed nuclear reactors: Scaling, dust generation, and stress. Nucl Eng Des, 265: 69–84.
 
Rycroft, C. H., Grest, G. S., Landry, J. W., Bazant, M. Z. 2006. Analysis of granular flow in a pebble-bed nuclear reactor. Phys Rev E, 74: 021306.
 
Ryskamp, J. M., Harvego, E. A., Khericha, S. T., Gorski, E. J., Beitel, G. A., Harrell, D. J. 2004. Next generation nuclear plant: High-level functions and requirements. In: Proceedings of the 12th International Conference on Nuclear Engineering, 395–402.
 
Shams, A., Roelofs, F., Komen, E. M. J., Baglietto, E. 2012. Optimization of a pebble bed configuration for quasi-direct numerical simulation. Nucl Eng Des, 242: 331–340.
 
Shams, A., Roelofs, F., Komen, E. M. J., Baglietto, E. 2013a. Large eddy simulation of a nuclear pebble bed configuration. Nucl Eng Des, 261: 10–19.
 
Shams, A., Roelofs, F., Komen, E. M. J., Baglietto, E. 2013b. Quasi-direct numerical simulation of a pebble bed configuration. Part I: Flow (velocity) field analysis. Nucl Eng Des, 263: 473–489.
 
Shams, A., Roelofs, F., Komen, E. M. J., Baglietto, E. 2013c. Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis. Nucl Eng Des, 263: 490–499.
 
Shams, A., Roelofs, F., Komen, E. M. J., Baglietto, E. 2015. Numerical simulation of nuclear pebble bed configurations. Nucl Eng Des, 290: 51–64.
 
Sobes, V., Forget, B., Kadak, A. 2011. Individual pebble temperature peaking factor due to local pebble arrangement in a pebble bed reactor core. Nucl Eng Des, 241: 124–133.
 
Sun, X. M., Chen, Z. P., Sun, J., Liu, Y., Zheng, Y. H., Li, F., Shi, L. 2018. CFD investigation of bypass flow in HTR-PM. Nucl Eng Des, 329: 147–155.
 
Sun, X. M., Dong, Y. J., Hao, P. F., Shi, L., Li, F., Feng, Y. T. 2017. Three-dimensional numerical simulation of quasi-static pebble flow. Adv Powder Technol, 28: 499–505.
 
Tehranian, F., Abdou, M. A. 1995. Experimental study of the effect of external pressure on particle bed effective thermal properties. Fusion Technol, 27: 298–313.
 
Venter, W. C., Lamprecht, E. C. 2012. Pebble bed micro model system identification. Ann Nucl Energ, 46: 1–10.
 
Wang, M. J., Liu, D., Xiang, Y., Cui, S. J., Su, G. H., Qiu, S. Z., Tian, W. X. 2017. Experimental study of the helium flow characteristics in pebble-bed under the condition of CFETR’s blanket module. Prog Nucl Energ, 100: 283–291.
 
Wu, H., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016. Effect of scale on the modeling of radiation heat transfer in packed pebble beds. Int J Heat Mass Tran, 101: 562–569.
 
Wu, H., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2017. Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation. Int J Heat Mass Tran, 110: 393–405.
 
Wu, H., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2018a. A smoothed void fraction method for CFD-DEM simulation of packed pebble beds with particle thermal radiation. Int J Heat Mass Tran, 118: 275–288.
 
Wu, H., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2018b. Modeling effective thermal conductivity of thermal radiation for nuclear packed pebble beds. J Heat Transf, 140: 042701.
 
Wu, H., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2018c. Particle-scale investigation of thermal radiation in nuclear packed pebble beds. J Heat Transf, 140: 092002.
 
Wu, Z. X., Wu, Y. W., Tang, S. M., Liu, D., Qiu, S. Z., Su, G. H., Tian, W. X. 2018d. DEM-CFD simulation of helium flow characteristics in randomly packed bed for fusion reactors. Prog Nucl Energ, 109: 29–37.
 
Yang, X. T., Gui, N., Tu, J. Y., Jiang, S. Y. 2014a. 3D DEM simulation and analysis of void fraction distribution in a pebble bed high temperature reactor. Nucl Eng Des, 270: 404–411.
 
Yang, X. T., Gui, N., Tu, J. Y., Jiang, S. Y. 2015. Numerical analysis of granular flows in a silo bed on flow regime characterization. PLoS One, 10: e0119155.
 
Yang, X. T., Hu, W. P., Jiang, S. Y., Wong, K. K. L., Tu, J. Y. 2012. Mechanism analysis of quasi-static dense pebble flow in pebble bed reactor using phenomenological approach. Nucl Eng Des, 250: 247–259.
 
Yang, X. T., Li, Y., Gui, N., Jia, X. L., Tu, J. Y., Jiang, S. Y. 2014b. Some movement mechanisms and characteristics in pebble bed reactor. Sci Technol Nucl Ins, 2014: 1–10.
 
Yesilyurt, G., Hassan, Y. A. 2003. Icone11-36426 flow distribution of pebble bed high temperature gas cooled reactors using large eddy simulation. In: Proceedings of the International Conference on Nuclear Engineering, 428.
 
Yin, X., Ge, L., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2018. Effect of pebble size and bed dimension on the distribution of voidages in pebble bed reactor. J Comput Multiphase Flows, 10: 99–108.
 
Zaccari, N., Aquaro, D. 2007. Mechanical characterization of Li2TiO3 and Li4SiO4 pebble beds: Experimental determination of the material properties and of the pebble bed effective values. Fusion Eng Des, 82: 2375–2382.
 
Zhao, X., Montgomery, T., Zhang, S. J. 2015. Modeling stationary and moving pebbles in a pebble bed reactor. Ann Nucl Energy, 80: 52–61.
 
Zheng, J., Wang, S., Jin, C., Chen, H. L. 2016. A measurement platform scheme and data post-processing method for thermal conductivity of Li4SiO4 pebble bed. J Fusion Energ, 35: 524–528.
 
Zheng, Y. H., Stempniewicz, M. M., Chen, Z. P., Shi, L. 2018. Study on the DLOFC and PLOFC accidents of the 200 MWe pebble-bed modular high temperature gas-cooled reactor with TINTE and SPECTRA codes. Ann Nucl Energy, 120: 763–777.
 
Zhou, G. M., Li, M., Liu, Q. W., Wang, S., Lv, Z., Chen, H. L., Ye, M. Y. 2015. Thermal analysis of breeder unit for helium cooled solid breeder blanket of Chinese fusion engineering test reactor. J Fusion Energ, 34: 339–345.
Experimental and Computational Multiphase Flow
Pages 159-176
Cite this article:
Jiang S, Tu J, Yang X, et al. A review of pebble flow study for pebble bed high temperature gas-cooled reactor. Experimental and Computational Multiphase Flow, 2019, 1(3): 159-176. https://doi.org/10.1007/s42757-019-0006-1

1299

Views

69

Downloads

84

Crossref

81

Web of Science

89

Scopus

Altmetrics

Received: 09 December 2018
Revised: 13 January 2019
Accepted: 17 January 2019
Published: 05 September 2019
© Tsinghua University Press 2019
Return