AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (5.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Progress on mechanical and tribological characterization of 2D materials by AFM force spectroscopy

Shuai WU1Jie GU1Ruiteng LI1Yuening TANG1Lingxiao GAO1Cuihua AN1Qibo DENG1,2( )Libin ZHAO1,3( )Ning HU1,4( )
Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
Advanced Equipment Research Institute Co., Ltd. of Hebei University of Technology, Tianjin 300401, China
Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Tianjin 300401, China
State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) materials are potential candidates for electronic devices due to their unique structures and exceptional physical properties, making them a focal point in nanotechnology research. Accurate assessment of the mechanical and tribological properties of 2D materials is imperative to fully exploit their potential across diverse applications. However, their nanoscale thickness and planar nature pose significant challenges in testing and characterizing their mechanical properties. Among the in situ characterization techniques, atomic force microscopy (AFM) has gained widespread applications in exploring the mechanical behaviour of nanomaterials, because of the easy measurement capability of nano force and displacement from the AFM tips. Specifically, AFM-based force spectroscopy is a common approach for studying the mechanical and tribological properties of 2D materials. This review comprehensively details the methods based on normal force spectroscopy, which are utilized to test and characterize the elastic and fracture properties, adhesion, and fatigue of 2D materials. Additionally, the methods using lateral force spectroscopy can characterize the interfacial properties of 2D materials, including surface friction of 2D materials, shear behaviour of interlayers as well as nanoflake-substrate interfaces. The influence of various factors, such as testing methods, external environments, and the properties of test samples, on the measured mechanical properties is also addressed. In the end, the current challenges and issues in AFM-based measurements of mechanical and tribological properties of 2D materials are discussed, which identifies the trend in the combination of multiple methods concerning the future development of the in situ testing techniques.

References

[1]

Papageorgiou D G, Kinloch I A, Young R J. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90: 75–127 (2017)

[2]

Li X, Sun M, Shan C X, Chen Q, Wei X L. Mechanical properties of 2D materials studied by in situ microscopy techniques. Adv Mater Interfaces 2018, 5: 1701246.

[3]

Kang S, Lee D H, Kim J, Capasso A, Kang H S, Park J W, Lee C H, Lee G H. 2D semiconducting materials for electronic and optoelectronic applications: Potential and challenge. 2D Mater 7(2): 022003 (2020)

[4]

Yu W, Gong K, Li Y, Ding B, Li L, Xu Y, Wang R, Li L, Zhang G, Lin S. Flexible 2D materials beyond graphene: Synthesis, properties, and applications. Small 18(14): e2105383 (2022)

[5]

Cai Y, Shen J, Ge G, Zhang Y, Jin W, Huang W, Shao J, Yang J, Dong X. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1): 56–62 (2018)

[6]

Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B. Black phosphorus field-effect transistors. Nat Nanotechnol 9: 372–377 (2014)

[7]

Fan F R, Tang W, Wang Z L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 28(22): 4283–4305 (2016)

[8]

Chen C, Shang X N, Zhu L H, Zhang W, Meng F B, Zheng S J. Recent advance in two-dimensional Ruddlesden–Popper perovskite solar cells. J Hebei Univ Technol 49(5): 26–34 (2020) (in Chinese)

[9]

Fang W S, Huang L, Zaman S, Wang Z T, Han Y J, Xia B Y. Recent progress on two-dimensional electrocatalysis. Chem Res Chinese U 36(4): 611–621 (2020)

[10]

Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem Rev 119(3): 1806–1854 (2019)

[11]

Megra Y T, Suk J W. Adhesion properties of 2D materials. J Phys D: Appl Phys 52(36): 364002 (2019)

[12]

Dai Z H, Rao Y F, Lu N S. Two-dimensional crystals on adhesive substrates subjected to uniform transverse pressure. Int J Solids Struct 257: 111829 (2022)

[13]

Thi Q H, Wong L W, Liu H, Lee C S, Zhao J, Ly T H. Spontaneously ordered hierarchical two-dimensional wrinkle patterns in two-dimensional materials. Nano Lett 20(11): 8420–8425 (2020)

[14]

Chen W, Gui X, Yang L, Zhu H, Tang Z. Wrinkling of two-dimensional materials: Methods, properties and applications. Nanoscale Horiz 4(2): 291–320 (2019)

[15]

Dai Z, Liu L, Zhang Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv Mater 31(45): e1805417 (2019)

[16]

Qi Y, Sadi M A, Hu D, Zheng M, Wu Z, Jiang Y, Chen Y P. Recent progress in strain engineering on van der waals 2D materials: Tunable electrical, electrochemical, magnetic, and optical properties. Adv Mater 35(12): e2205714 (2023)

[17]

Zhao Y S, Miao L L, Hao W Z, Zhao G X, Li J J, Li J X, Liu Z, Sui C, He X D, Wang C. Two-dimensional carbon nanotube woven highly-stretchable film with strain-induced tunable impacting performance. Carbon 189: 539–547 (2022)

[18]

Feng S Z, Wang W X, Wang S J, Cui X W, Yang Y F, Xu F, Liu L Q, Xu Z P. Controlling and visualizing fracture of 2D crystals by wrinkling. J Mech Phys Solids 174: 105253 (2023)

[19]
Gao L B, Zhao H T, Wang Z, Adam M L, Sun Z H, Liu K L, Wang J H, Lu Y, Yin Z Y, Yu X Y. 2D materials inks toward smart flexible electronics. Mater Today 2021(50): 116–148.
[20]

Zhang R, Jiang J, Wu W. Wearable chemical sensors based on 2D materials for healthcare applications. Nanoscale 15(7): 3079–3105 (2023)

[21]

Kim J, Lee Y, Kang M, Hu L, Zhao S, Ahn JH. 2D materials for skin-mountable electronic devices. Adv Mater 33(47): e2005858 (2021)

[22]

Li R, Ma X Y, Li J M, Cao J, Gao H Z, Li T S, Zhang X Y, Wang L C, Zhang Q H, Wang G, et al. Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat Commun 12: 1587 (2021)

[23]

Jing L, Li K R, Yang H T, Chen P Y. Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Mater Horiz 7(1): 54–70 (2020)

[24]

Najafi F, Wang G R, Cui T, Anand A, Mukherjee S, Filleter T, Sain M, Singh C V. Fatigue resistance of atomically thin graphene oxide. Carbon 183: 780–788 (2021)

[25]

Cui T, Yip K, Hassan A, Wang G R, Liu X J, Sun Y, Filleter T. Graphene fatigue through van der Waals interactions. Sci Adv 6(42): eabb1335 (2020)

[26]

Spear J C, Ewers B W, Batteas J D. 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 10(3): 301–314 (2015)

[27]

Hu E Z, Xu Y, Hu K H, Hu X G. Tribological properties of 3 types of MoS2 additives in different base greases. Lubr Sci 29(8): 541–555 (2017)

[28]

Li Y, Gao K, Zhang Y, Jiao J, Zhang L, Xie G. Partially oxidized violet phosphorus as an excellent lubricant additive for tribological applications. Nano Lett 23(14): 6292–6300 (2023)

[29]

Cooper R C, Lee C G, Marianetti C A, Wei X D, Hone J, Kysar J W. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys Rev B 87(3): 035423 (2013)

[30]

Fan X, Zheng W T, Kuo J L, Singh D J. Structural stability of single-layer MoS2 under large strain. J Phys Condens Matter 27(10): 105401 (2015)

[31]

Zhang J F, Zhao J J, Lu J P. Intrinsic strength and failure behaviors of graphene grain boundaries. ACS Nano 6(3): 2704–2711 (2012)

[32]

Wei Y, Wang B, Wu J, Yang R, Dunn M L. Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett 13(1): 26–30 (2013)

[33]

Patra L, Pandey R. Mechanical properties of 2D materials: A review on molecular dynamics based nanoindentation simulations. Mater Today Commun 31: 103623 (2022)

[34]

Li X, Wei X L, Chen Q. In-situ environmental scanning electron microscopy for probing the properties of advanced energy materials. Int J Nanomanuf 12(3/4): 264 (2016)

[35]

Wei X, Xiao S, Li F, Tang D M, Chen Q, Bando Y, Golberg D. Comparative fracture toughness of multilayer graphenes and boronitrenes. Nano Lett 15(1): 689–694 (2015)

[36]

Chen H, Huang P, Guo D, Xie G X. Anisotropic mechanical properties of black phosphorus nanoribbons. J Phys Chem C 120(51): 29491–29497 (2016)

[37]

Yang Y C, Li X, Wen M R, Hacopian E, Chen W B, Gong Y J, Zhang J, Li B, Zhou W, Ajayan P M, et al. Brittle fracture of 2D MoSe2. Adv Mater 29(2): 1604201 (2017)

[38]

Cao K, Feng S Z, Han Y, Gao L B, Hue Ly T, Xu Z P, Lu Y. Elastic straining of free-standing monolayer graphene. Nat Commun 11: 284 (2020)

[39]

Fang Z, Dai Z, Wang B, Tian Z, Yu C, Chen Q, Wei X. Pull-to-peel of two-dimensional materials for the simultaneous determination of elasticity and adhesion. Nano Lett 23(2): 742–749 (2023)

[40]

Li H, Wang J H, Gao S, Chen Q, Peng L M, Liu K H, Wei X L. Superlubricity between MoS2 monolayers. Adv Mater 29(27): 1701474 (2017)

[41]

Liu Z, Yang J, Grey F, Liu JZ, Liu Y, Wang Y, Yang Y, Cheng Y, Zheng Q. Observation of microscale superlubricity in graphite. Phys Rev Lett 108(20): 205503 (2012)

[42]

Liao Z Q, Medrano Sandonas L, Zhang T, Gall M, Dianat A, Gutierrez R, Mühle U, Gluch J, Jordan R, Cuniberti G, et al. In-situ stretching patterned graphene nanoribbons in the transmission electron microscope. Sci Rep 7: 211 (2017)

[43]

Wang S, Qin Z, Jung G S, Martin-Martinez F J, Zhang K, Buehler M J, Warner J H. Atomically sharp crack tips in monolayer MoS2 and their enhanced toughness by vacancy defects. ACS Nano 10(11): 9831–9839 (2016)

[44]

Ascoli C, Dinelli F, Frediani C, Petracchi D, Salerno M, Labardi M, Allegrini M, Fuso F. Normal and lateral forces in scanning force microscopy. J Vac Sci Technol B 12(3): 1642–1645 (1994)

[45]

Tu Q, Spanopoulos I, Yasaei P, Stoumpos C C, Kanatzidis M G, Shekhawat G S, Dravid V P. Stretching and breaking of ultrathin 2D hybrid organic-inorganic perovskites. ACS Nano 12: 10347–10354 (2018).

[46]

Zhang R, Koutsos V, Cheung R. Elastic properties of suspended multilayer WSe2. Appl Phys Lett 108(4): 042104. (2016)

[47]

Lee C G, Wei X D, Li Q Y, Carpick R, Kysar J W, Hone J. Elastic and frictional properties of graphene. Phys Status Solidi B 246(11–12): 2562–2567 (2009)

[48]

Li P F, Kang Z, Zhang Z, Liao Q L, Rao F, Lu Y, Zhang Y. In situ microscopy techniques for characterizing the mechanical properties and deformation behavior of two-dimensional (2D) materials. Mater Today 51: 247–272 (2021)

[49]

Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep 59(1): 1–152 (2005)

[50]
Carpick R, Batteas J, Boer M. Scanning probe studies of nanoscale adhesion between solids in the presence of liquids and monolayer films. In: Springer Handbook of Nanotechnology. Bhushan B Ed. Berlin and Heidelberg (Germany) Springer-Verlag, 2007: 951–980.
[51]

Rokni H, Lu W. Direct measurements of interfacial adhesion in 2D materials and van der Waals heterostructures in ambient air. Nat Commun 11: 5607 (2020)

[52]

Carpick R W, Ogletree D F, Salmeron M. A general equation for fitting contact area and friction vs load measurements. J Colloid Interf Sci 211(2): 395–400 (1999)

[53]

Sinha A, Priyadarshi P, Muralidharan B. Ballistic graphene arrays for ultra-high pressure sensing. J Appl Phys 132(15): 154501. (2022)

[54]

Hou Y, Dai Z H, Zhang S, Feng S Z, Wang G R, Liu L Q, Xu Z P, Li Q Y, Zhang Z. Elastocapillary cleaning of twisted bilayer graphene interfaces. Nat Commun 12: 5069 (2021)

[55]

Gupta S, Yu H, Yakobson B I. Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers. Nat Commun 13: 3103 (2022)

[56]

Jiang T, Zhu Y. Measuring graphene adhesion using atomic force microscopy with a microsphere tip. Nanoscale 7(24): 10760–10766 (2015)

[57]

Agmon L, Almog R, Gaspar D, Voscoboynik G, Choudhary M, Jopp J, Klausner Z, Ya’akobovitz A, Berkovich R. Nanoscale contact mechanics of the interactions at monolayer MoS2 interfaces with Au and Si. Tribol Int 174: 107734 (2022)

[58]

Li B W, Yin J, Liu X F, Wu H R, Li J D, Li X M, Guo W L. Probing van der Waals interactions at two-dimensional heterointerfaces. Nat Nanotechnol 14: 567–572 (2019)

[59]

Polfus J M, Muñiz M B, Ali A, Barragan-Yani D A, Vullum P E, Sunding M F, Taniguchi T, Watanabe K, Belle B D. Temperature-dependent adhesion in van der waals heterostructures. Adv Mater Interfaces 8(20): 2100838 (2021)

[60]

Deng S K, Berry V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater Today 19(4): 197–212 (2016)

[61]

Castellanos-Gomez A, Singh V, van der Zant H S J, Steele G A. Mechanics of freely-suspended ultrathin layered materials. Ann Der Phys 527(1–2): 27–44 (2015)

[62]

Cao G X, Gao H J. Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog Mater Sci 103: 558–595 (2019)

[63]

Jiang H J, Zheng L, Liu Z, Wang X W. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2(6): 1077–1094 (2020)

[64]

Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L. Impermeable atomic membranes from graphene sheets. Nano Lett 8(8): 2458–2462 (2008)

[65]

Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385–388 (2008)

[66]

Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agraït N, Rubio-Bollinger G. Elastic properties of freely suspended MoS2 nanosheets. Adv Mater 24(6): 772–775 (2012)

[67]

Falin A, Holwill M, Lv H F, Gan W, Cheng J, Zhang R, Qian D, Barnett M R, Santos E J G, Novoselov K S, et al. Mechanical properties of atomically thin tungsten dichalcogenides: WS2, WSe2, and WTe2. ACS Nano 15(2): 2600–2610 (2021)

[68]

Lipatov A, Lu H, Alhabeb M, Anasori B, Gruverman A, Gogotsi Y, Sinitskii A. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci Adv 4(6): eaat0491 (2018)

[69]

Lipatov A, Alhabeb M, Lu H D, Zhao S S, Loes M J, Vorobeva N S, Dall’Agnese Y, Gao Y, Gruverman A, Gogotsi Y, et al. Electrical and elastic properties of individual single-layer Nb4C3Tx MXene flakes. Adv Elect Mater 6(4): 1901382 (2020)

[70]

Datta K, Shadman A, Rahman E, Khosru Q D M. Trilayer TMDC heterostructures for MOSFETs and nanobiosensors. J Electron Mater 46(2): 1248–1260 (2017)

[71]

Hu R X, Wu E X, Xie Y, Liu J. Multifunctional anti-ambipolar p-n junction based on MoTe2/MoS2 heterostructure. Appl Phys Lett 115(7): 073104 (2019)

[72]

Sundararaju U, Mohammad Haniff MAS, Ker P J, Menon P S. MoS2/h-BN/graphene heterostructure and plasmonic effect for self-powering photodetector: A review. Materials (Basel) 14(7): 1672 (2021)

[73]

Mukherjee B, Hayakawa R, Watanabe K, Taniguchi T, Nakaharai S, Wakayama Y. ReS2/h-BN/graphene heterostructure based multifunctional devices: Tunneling diodes, FETs, logic gates, and memory. Adv Electron Mater 7(1): 2000925 (2021)

[74]

Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S, et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett 14(9): 5097–5103 (2014)

[75]

Li P, You Z, Cui T H. Molybdenum disulfide dc contact MEMS shunt switch. J Micromech Microeng 23(4): 045026 (2013)

[76]

Frank I W, Tanenbaum D M, van der Zande A M, McEuen P L. Mechanical properties of suspended graphene sheets. J Vac Sci Technol B 25(6): 2558–2561 (2007)

[77]

Tao J, Shen W, Wu S, Liu L, Feng Z, Wang C, Hu C, Yao P, Zhang H, Pang W, et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 9(11): 11362–11370 (2015)

[78]

Gómez-Navarro C, Burghard M, Kern K. Elastic properties of chemically derived single graphene sheets. Nano Lett 8(7): 2045–2049 (2008)

[79]

Fan X G, Forsberg F, Smith A D, Schröder S, Wagner S, Rödjegård H, Fischer A C, Östling M, Lemme M C, Niklaus F. Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers. Nat Electron 2: 394–404 (2019)

[80]

Fan X G, Niklaus F. Deformation behavior and mechanical properties of suspended double-layer graphene ribbons induced by large atomic force microscopy indentation forces. Adv Eng Mater 24(3): 2100826. (2022)

[81]

Gao L. Flexible device applications of 2D semiconductors. Small 13(35): 1603994. (2017)

[82]

Wu H, Jiang K, Gu S S, Yang H, Lou Z, Chen D, Shen G Z. Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res 8(11): 3544–3552 (2015)

[83]

Miao J S, Wang C. Avalanche photodetectors based on two-dimensional layered materials. Nano Res 14(6): 1878–1888 (2021)

[84]

Jiang H J, Zheng L, Wei Y, Wang X W. In-situ investigation of the elastic behavior of two-dimensional MoS2 on flexible substrate by nanoindentation. J Phys D: Appl Phys 54(50): 504006 (2021)

[85]

Kocun M, Labuda A, Meinhold W, Revenko I, Proksch R. Fast, high resolution, and wide modulus range nanomechanical mapping with bimodal tapping mode. ACS Nano 11(10): 10097–10105 (2017)

[86]

Garcia R, Proksch R. Nanomechanical mapping of soft matter by bimodal force microscopy. Eur Polym J 49(8): 1897–1906 (2013)

[87]

Trewby W, Faraudo J, Voïtchovsky K. Long-lived ionic nano-domains can modulate the stiffness of soft interfaces. Nanoscale 11(10): 4376–4384 (2019)

[88]

Dupont M F, Elbourne A, Mayes E, Latham K. Measuring the mechanical properties of flexible crystals using bi-modal atomic force microscopy. Phys Chem Chem Phys 21(36): 20219–20224 (2019)

[89]

Athanasopoulou E N, Nianias N, Ong Q K, Stellacci F. Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers. Nanoscale 10(48): 23027–23036 (2018)

[90]

Al-Rekabi Z, Contera S. Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity. Proc Natl Acad Sci USA 115(11): 2658–2663 (2018)

[91]

Labuda A, Kocuń M, Meinhold W, Walters D, Proksch R. Generalized Hertz model for bimodal nanomechanical mapping. Beilstein J Nanotechnol 7: 970–982 (2016)

[92]

Li Y H, Yu C B, Gan Y Y, Jiang P, Yu J X, Ou Y, Zou D F, Huang C, Wang J H, Jia T T, et al. Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. npj Comput Mater 4: 49 (2018)

[93]

Herruzo ET, Garcia R. Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus. Beilstein J Nanotechnol 3: 198–206 (2012)

[94]

Harcombe D M, Ruppert M G, Fleming A J. A review of demodulation techniques for multifrequency atomic force microscopy. Beilstein J Nanotechnol 11: 76–91 (2020)

[95]

Dou Z, Qian J, Li Y, Wang Z, Zhang Y, Lin R, Wang T. Molecular dynamics simulation of bimodal atomic force microscopy. Ultramicroscopy 212: 112971 (2020)

[96]

Dimitriadis E K, Horkay F, Maresca J, Kachar B, Chadwick R S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5): 2798–2810 (2002)

[97]

Chiodini S, Ruiz-Rincón S, Garcia P D, Martin S, Kettelhoit K, Armenia I, Werz D B, Cea P. Bottom effect in atomic force microscopy nanomechanics. Small 16(35): e2000269 (2020)

[98]

Gisbert VG, Garcia R. Accurate wide-modulus-range nanomechanical mapping of ultrathin interfaces with bimodal atomic force microscopy. ACS Nano 15(12): 20574–20581 (2021)

[99]

Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano 5(12): 9703–9709 (2011)

[100]

Falin A, Cai Q R, Santos E J G, Scullion D, Qian D, Zhang R, Yang Z, Huang S M, Watanabe K, Taniguchi T, et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat Commun 8: 15815 (2017)

[101]

Zhan H, Tan X, Xie G, Guo D. Reduced fracture strength of 2D materials induced by interlayer friction. Small 17(13): e2005996 (2021)

[102]

Hou H Y, Yan Y F, Jagatramka R, Shirsalimian A, Wang Y F, Li B Z, Daly M, Cao C H. Recent advances in the mechanics of 2D materials. Int J Extrem Manuf 5(3): 032002 (2023)

[103]

Manzanares-Negro Y, López-Polín G, Fujisawa K, Zhang T, Zhang F, Kahn E, Perea-López N, Terrones M, Gómez-Herrero J, Gómez-Navarro C. Confined crack propagation in MoS2 monolayers by creating atomic vacancies. ACS Nano 15(1): 1210–1216 (2021)

[104]

Liu T, Zhu C Z, Wu W, Liao K N, Gong X J, Sun Q J, Li R K Y. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices. J Mater Sci Technol 45: 241–247 (2020)

[105]

Park J J, Hyun W J, Mun S C, Park Y T, Park O O. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Inter 7(11): 6317–6324 (2015)

[106]

Lin Q Y, Zeng Y H, Liu D M, Jing G, Liao Z, Yu D. Step-by-step fracture of two-layer stacked graphene membranes. ACS Nano 8(10): 10246–10251 (2014)

[107]

Xiao B B, Yin M Q, Li W F, Liang L Y, Dai S X, Zhang X H, Wang W, Liu Z P. Significant enhanced mechanical properties of suspended graphene film by stacking multilayer CVD graphene films. Micromachines 14(4): 745 (2023)

[108]

Cui T, Mukherjee S, Sudeep P M, Colas G, Najafi F, Tam J, Ajayan P M, Singh C V, Sun Y, Filleter T. Fatigue of graphene. Nat Mater 19: 405–411 (2020)

[109]

Amirmaleki M, Cui T, Zhao Y, Tam J, Goel A, Sun Y, Sun X, Filleter T. Fracture and fatigue of Al2O3-graphene nanolayers. Nano Lett 21(1): 437–444 (2021)

[110]

Cui T, Mukherjee S, Onodera M, Wang G R, Kumral B, Islam A, Shayegannia M, Krishnan G, Barri N, Serles P, et al. Mechanical reliability of monolayer MoS2 and WSe2. Matter 5(9): 2975–2989 (2022)

[111]

Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J. Frictional characteristics of atomically thin sheets. Science 328(5974): 76–80 (2010)

[112]

Vazirisereshk M R, Hasz K, Zhao M Q, Charlie Johnson A T, Carpick R W, Martini A. Nanoscale friction behavior of transition-metal dichalcogenides: Role of the chalcogenide. ACS Nano 14(11): 16013–16021 (2020)

[113]

Serles P, Hamidinejad M, Demingos P G, Ma L, Barri N, Taylor H, Singh C V, Park C B, Filleter T. Friction of Ti3C2Tx MXenes. Nano Lett 22(8): 3356–3363 (2022)

[114]

Serles P, Arif T, Puthirath A B, Yadav S, Wang G, Cui T, Balan A P, Yadav T P, Thibeorchews P, Chakingal N, et al. Friction of magnetene, a non-van der Waals 2D material. Sci Adv 7(47): eabk2041 (2021)

[115]

Wang L, Zhang D W, Luo Z D, Sharma P, Seidel J. Inhomogeneous friction behaviour of nanoscale phase separated layered CuInP2S6. Adv Funct Mater 33(38): 2303583 (2023)

[116]

Zhang Y, Dong M, Gueye B, Ni Z H, Wang Y J, Chen Y F. Temperature effects on the friction characteristics of graphene. Appl Phys Lett 107(1): 011601. (2015)

[117]

Quereda J, Castellanos-Gomez A, Agraït N, Rubio-Bollinger G. Single-layer MoS2 roughness and sliding friction quenching by interaction with atomically flat substrates. Appl Phys Lett 105(5): 053111. (2014)

[118]

Zhao X, Peng Y, Cao X, Yu K, Lang H. Robust superlubric interface across nano- and micro-scales enabled by fluoroalkylsilane self-assembled monolayers and atomically thin graphene. ACS Appl Mater Inter 13(47): 56704–56717 (2021)

[119]

Fang L, Liu D M, Guo Y, Liao Z M, Luo J B, Wen S Z. Thickness dependent friction on few-layer MoS2, WS2, and WSe2. Nanotechnology 28(24): 245703 (2017)

[120]

Edmonds MT, Tadich A, Carvalho A, Ziletti A, O’Donnell K M, Koenig S P, Coker D F, Özyilmaz B, Neto A H, Fuhrer MS. Creating a stable oxide at the surface of black phosphorus. ACS Appl Mater Inter 7(27): 14557–14562 (2015)

[121]

Walia S, Balendhran S, Ahmed T, Singh M, El-Badawi C, Brennan M D, Weerathunge P, Karim M N, Rahman F, Rassell A, et al. Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. Adv Mater 29(27): 1700152 (2017)

[122]

Wu S, He F, Xie G, Bian Z, Luo J, Wen S. Black phosphorus: Degradation favors lubrication. Nano Lett 18(9): 5618–5627 (2018)

[123]

Zhang Y G, Zhang D L, Wang Y, Liu Q, Li Q, Dong M D. Atomic-scale friction of black and violet phosphorus crystals: Implications for phosphorus-based devices and lubricants. ACS Appl Nano Mater 4(9): 9932–9937 (2021)

[124]

Koren E, Lörtscher E, Rawlings C, Knoll A W, Duerig U. Adhesion and friction in mesoscopic graphite contacts. Science 348(6235): 679–683 (2015)

[125]

Song Y M, Mandelli D, Hod O, Urbakh M, Ma M, Zheng Q S. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat Mater 17: 894–899 (2018)

[126]

Liao M Z, Nicolini P, Du L J, Yuan J H, Wang S P, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, et al. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. Nat Mater 21: 47–53 (2022)

[127]

Thi Q H, Man P, Liu H, Huang L, Chen X, Lee C S, Zhao J, Deng Q, Saeed S, Ly T H. Ultrahigh lubricity between two-dimensional ice and two-dimensional atomic layers. Nano Lett 23(4): 1379–1385 (2023)

[128]

Liu S W, Wang H P, Xu Q, Ma T B, Yu G, Zhang C H, Geng D C, Yu Z W, Zhang S G, Wang W Z, et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat Commun 8: 14029 (2017)

[129]

Lee G, Pearton S J, Ren F, Kim J. Two-dimensionally layered p-black phosphorus/n-MoS2/p-black phosphorus heterojunctions. ACS Appl Mater Inter 10(12): 10347–10352 (2018)

[130]

Li Y X, Huang S H, Wei C J, Zhou D, Li B, Wu C L, Mochalin V N. Adhesion between MXenes and other 2D materials. ACS Appl Mater Inter 13(3): 4682–4691 (2021)

[131]

Wang K C, He Z Y, Li X Y, Xu K, Zhou Q P, Ye X W, Zhang T, Jiang S H, Zhang Y M, Hu B, et al. Black-phosphorus-based junctions and their optoelectronic device applications. Nano Res 16(1): 1651–1669 (2023)

[132]

Gong L, Kinloch I A, Young R J, Riaz I, Jalil R, Novoselov K S. Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22(24): 2694–2697 (2010)

[133]

Xu C C, Xue T, Qiu W, Kang Y L. Size effect of the interfacial mechanical behavior of graphene on a stretchable substrate. ACS Appl Mater Inter 8(40): 27099–27106 (2016)

[134]

Na S R, Wang X H, Piner R D, Huang R, Willson C G, Liechti K M. Cracking of polycrystalline graphene on copper under tension. ACS Nano 10(10): 9616–9625 (2016)

[135]

Wu S, He F, Xie G, Bian Z, Ren Y, Liu X, Yang H, Guo D, Zhang L, Wen S, et al. Super-slippery degraded black phosphorus/silicon dioxide interface. ACS Appl Mater Inter 12(6): 7717–7726 (2020)

[136]

Sun Y F, Wang Y J, Wang E Z, Wang B L, Zhao H Y, Zeng Y P, Zhang Q H, Wu Y H, Gu L, Li X Y, et al. Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation. Nat Commun 13: 3898 (2022)

Friction
Pages 2627-2656
Cite this article:
WU S, GU J, LI R, et al. Progress on mechanical and tribological characterization of 2D materials by AFM force spectroscopy. Friction, 2024, 12(12): 2627-2656. https://doi.org/10.1007/s40544-024-0864-9

404

Views

22

Downloads

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 11 September 2023
Revised: 16 November 2023
Accepted: 18 December 2023
Published: 10 July 2024
© The author(s) 2023.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return