References(52)
[1]
Choi C S, Boutin H P. A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction. Acta Cryst 26(9): 1235–1240 (1970)
[2]
Risse B, Schnell F, Spitzer D. Synthesis and desensitization of nano-β-HMX. Propell Explos Pyrot 39(3): 397–401 (2014)
[3]
Weese R K, Maienschein J L, Perrino C T. Kinetics of the β→δ solid–solid phase transition of HMX, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Thermochim Acta 401(1): 1–7 (2003)
[4]
Sharia O, Kuklja M M. Modeling thermal decomposition mechanisms in gaseous and crystalline molecular materials: Application to β-HMX. J Phys Chem B 115: 12677–12686 (2011)
[5]
Long Y, Chen J, Liu Y G, Nie F D, Sun J S. A direct method to calculate thermal conductivity and its application in solid HMX. J Phys Condens Matter 22: 185404 (2010)
[6]
Norris R S, Kristensen H M, Handler J. The B61 family of nuclear bombs. Bull Atom Sci 59: 74–76 (2003)
[7]
Hunt E M, Malcolm S, Pantoya M L, Davis F. Impact ignition of nano and micron composite energetic materials. Int J Impact Eng 36(6): 842–846 (2009)
[8]
Perry W L, Gunderson J A, Balkey M M, Dickson P M. Impact-induced friction ignition of an explosive: Infrared observations and modeling. J Appl Phys 108(8): 084902 (2010)
[9]
Guo Y, Liu R, Chen P, Zhou B, Hu G, Han C, Lv K, Zhu S. Mechanical behavior of PBX with different HMX crystal size during die pressing: Experimental study and DEM simulation. Compo Sci Tech 222: 109378 (2022)
[10]
Zhao P, Lu F, Chen R, Lin Y L, Li J L, Lu L, Sun G L. A technique for combined dynamic compression-shear test. Rev Sci Instrum 82: 035110 (2011)
[11]
Hoffman D M, Chandler J B. Aspects of the tribology of the plastic bonded explosive (PBX) 9404. J Energetic Mater 22(4): 199–216 (2004)
[12]
Zhao J, Wu L, Hua F, Feng Z. Research on the friction coefficient between explosive and different material. Chin J High Pressure Phys 28(5): 591–596 (2014)
[13]
Cao Z M, Zong W J, He C L, Huang J H, Liu W, Wei Z Y. Thermal safety model of HMX-based explosives in diamond turning. Mater Des 205: 109698 (2021)
[14]
Qin J, Chen R, Wen X, Lin Y, Liang M, Lu F. Mechanical behaviour of dual-phase high-strength steel under high strain rate tensile loading. Mater Sci Eng A 586: 62–70 (2013)
[15]
Duarte C A, Kohler R, Koslowsk M. Dynamic fracture and frictional heating due to periodic excitation in energetic materials. J Appl Phys 124: 165109 (2018)
[16]
Stempflé P, Takadoum J. Multi-asperity nanotribological behavior of single-crystal silicon: Crystallography-induced anisotropy in friction and wear. Tribol Int 48: 35–43 (2012)
[17]
Geng Y, Zhang J, Yan Y, Yu B, Geng L, Sun T. Experimental and theoretical investigation of crystallographic orientation dependence of nanoscratching of single crystalline copper. PLoS One 10(7): e0131886 (2015)
[18]
Alfyorova E, Lychagin D V, Filippov A V. Octahedral slip in nickel single crystals induced by scratch testing. Lett Mater 8(4): 415–418 (2018)
[19]
Sun Y, Liu J, Li J, Dong L, Zhao W. Molecular dynamics simulation study on crystal anisotropy of single crystal Mg nano-scratch. Appl Phys A 128: 484 (2022)
[20]
Liu H, Zong W, Cheng X. Origins for the anisotropy of the friction force of diamond sliding on diamond. Tribol Int 148: 106298 (2020)
[21]
Tao Y, Xu J, Zhang H, Huang S, Yang Z, Sun J, Lei M. An experimental and theoretical study on the growth of plate-like β-HMX crystals in the hydroxylated interlayer space. Phys Chem Chem Phys 23: 12340–12349 (2021)
[22]
Surber E, Lozano A, Lagutchev A, Kim H, Dlott D D. Surface nonlinear vibrational spectroscopy of energetic materials: HMX. J Phys Chem C 111(5): 2235–2241 (2007)
[23]
Cady H H, Larson A C, Cromer D T. The crystal structure of α-HMX and a refinement of the structure of β-HMX. Acta Cryst 16(7): 617–623 (1963)
[24]
Xu N, Han W, Wang Y, Li J, Shan Z. Nanoscratching of copper surface by CeO2. Acta Mater 124: 343–350 (2017)
[25]
Ye Y X, Liu C Z, Wang H, Nieh T G. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater 147: 78–89 (2018)
[26]
Wang Y, Zhu Y, Zhao D, Bian D. Nanoscratch of aluminum in dry, water and aqueous H2O2 conditions. Appl Sur Sci 464: 229–235 (2019)
[27]
Johnson K L. Contact Mechanics. Cambridge (UK): Cambridge University Press, 2003.
[28]
Xu N, Ma J, Liu Q, Han W, Shan Z. Size Effect of CeO2 particle on nanoscale single-asperity sliding friction. Tribol Lett 70: 4 (2022)
[29]
Mokhtar M O A, Zaki M, Shawki G S A. Effect of mechanical properties on frictional behaviour of metals. Tribol Int 12(6): 265–268 (1979)
[30]
Li M, Tan W, Kang B, Xu R, Tang W. The elastic modulus of β-HMX crystals determined by nanoindentation. Propell Explos Pyrot 35(4): 379–383(2010)
[31]
Mokhtar M O A. The effect of hardness on the frictional behaviour of metals. Wear 78(3): 297–304 (1982)
[32]
Yu J, Kim SH, Yu B, Qian L, Zhou Z. Role of tribochemistry in nanowear of single-crystalline silicon. ACS Appl Mater Inter 4(3): 1585–1593 (2012)
[33]
Yu J, Qian L, Yu B, Zhou Z. Nanofretting behaviors of monocrystalline silicon (100) against diamond tips in atmosphere and vacuum. Wear 267(1): 322–329 (2009)
[34]
Ponton C B, Rawlings R D. Vickers indentation fracture toughness test: Part I. Review of literature and formulation of standardised indentation toughness equations. Mater Sci Tech 5: 865–872 (1989)
[35]
Quinn J B, Quinn G D. Indentation brittleness of ceramics a fresh approach. J Mater Sci 32: 4331–4346 (1997)
[36]
Gallagher H G, Miller J C, Sheen D B, Sherwood J N, Vrcelj R M. Mechanical properties of β-HMX. Chem Cent J 9(1): 1–15 (2015)
[37]
Chen L, Hu L, Xiao C, Qi Y, Yu B, Qian L. Effect of crystallographic orientation on mechanical removal of CaF2. Wear 376: 409–416 (2017)
[38]
Armstrong R W, Arnold W, Zerilli F J. Dislocation mechanics of copper and iron in high rate deformation tests. J Appl Phys 105: 023511 (2009)
[39]
Gao H, Wang Q, Ke X, Liu J, Hao G, Xiao L, Chen T, Jiang W, Liu Q. Preparation and characterization of an ultrafine HMX/NQ co-crystal by vacuum freeze drying method. RSC Adv 7: 46229–46235 (2017)
[40]
Sui Z, Sun X, Liang W, Dai R, Wang Z, Huang S, Zheng X, Zhang Z, Wu Q. Phase confirmation and equation of state of β-HMX under 40 GPa. J Phys Chem C 123(50): 30121–30128 (2019)
[41]
Talamadupula K K, Povolny S J, Prakash N, Seidel G D. Mesoscale strain and damage sensing in nanocomposite bonded energetic materials under low velocity impact with frictional heating via peridynamics. Modelling Simul Mater Sci Eng 28: 085011 (2020)
[42]
Li X, Liu Y, Sun Y. Dynamic mechanical damage and non-shock initiation of a new polymer bonded explosive during penetration. Polymers 12: 1342 (2020)
[43]
Yang K, Wu Y, Huang F. Damage and hotspot formation simulation for impact-shear loaded PBXs using combined microcrack and microvoid model. Eur J Mechan A Solids 80: 103924 (2020)
[44]
He H, Qian L, Pantano C G, Kim S H. Effects of humidity and counter-surface on tribochemical wear of soda-lime-silica glass. Wear 342: 100–106 (2015)
[45]
He H, Hahn S H, Yu J, Qian L, Kim S H. Factors governing wear of soda lime silicate glass: Insights from comparison between nano- and macro-scale wear. Tribol Int 171: 107566 (2022)
[46]
He H, Kim S H, Qian L. Effects of contact pressure, counter-surface and humidity on wear of soda-lime-silica glass at nanoscale. Tribol Int 94: 675-681 (2016)
[47]
Bennett J G, Haberman K S, Johnson J N, Asay B W. A constitutive model for the non-shock ignition and mechanical response of high explosives. J Mech Phys Solids 46(12): 2303–2322 (1998)
[48]
Duarte C A, Grilli N, Koslowski M. Effect of initial damage variability on hot-spot nucleation in energetic materials. J Appl Phys 124: 025104 (2018)
[49]
Lee J, Hsu C, Chang C. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochimi Acta 392–393: 173–176 (2002)
[50]
Barthel A J, Al-Azizi A, Surdyka N D, Kim S H. Effects of gas or vapor adsorption on adhesion, friction, and wear of solid interfaces. Langmuir 30(11): 2977–2992 (2014)
[51]
Xiao C, Shi P, Yan W, Chen L, Qian L, Kim S H. Thickness and structure of adsorbed water layer and effects on adhesion and friction at nanoasperity contact. Coll Inter 3(3): 55 (2019)
[52]
Zeng G, Sun W, Song R, Tansu N, Krick B A. Crystal orientation dependence of gallium nitride wear. Sci Rep 7: 14126 (2017)