Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Macroscale superlubricity has attracted increasing attention owing to its high significance in engineering and economics. We report the superlubricity of engineering materials by the addition of partially oxidized black phosphorus (oBP) in an oleic acid (OA) oil environment. The phosphorus oxides produced by active oxidation exhibit lower friction and quick deposition performance compared to BP particles. The H-bond (–COOH···O–P, or –COOH···O=P) formed between P–O bond (or P=O) and OA molecule could benefit the lubricating state and decrease the possibility of direct contact between rough peaks. The analysis of the worn surface indicates that a three-layer tribofilm consisting of amorphous carbon, BP crystal, and phosphorus oxide forms during the friction, which replaces the shear interface from the steel/steel to carbon–oBP/carbon–oBP layer and enables macroscale superlubricity.
487
Views
18
Downloads
8
Crossref
8
Web of Science
9
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.