Journal Home > Volume 9 , Issue 3

Self-lubricating polymer composite coatings, with tailorable tribological and mechanical properties, have been widely employed on mechanical parts to reduce friction and wear, which saves energy and improves the overall performance for applications such as aerospace satellite parts, shafts, gears, and bushings. The addition of functional fillers can overcome the limitations of single-polymer coatings and extend the service life of the coatings by providing a combination of low friction, high wear resistance, high load bearing, high temperature resistance, and high adhesion. This paper compares the heat resistance, and the tribological and mechanical properties of common polymer matrices, as well as the categories of functional fillers that improve the coating performance. Applicable scopes, process parameters, advantages, and limitations of the preparation methods of polymer coatings are discussed in detail. The tribological properties of the composite coatings with different matrices and fillers are compared, and the lubrication mechanisms are analyzed. Fillers reduce friction by promoting the formation of transfer films or liquid shear films. Improvement of the mechanical properties of the composite coatings with fillers of different morphologies is described in terms of strengthening and toughening mechanisms, including a stress transfer mechanism, shear yielding, crack bridging, and interfacial debonding. The test and enhancement methods for the adhesion properties between the coating and substrate are discussed. The coating adhesion can be enhanced through mechanical treatment, chemical treatment, and energy treatment of the substrate. Finally, we propose the design strategies for high-performance polymer composite coating systems adapted to specific operating conditions, and the limitations of current polymer composite coating research are identified.


menu
Abstract
Full text
Outline
About this article

A review on tribology of polymer composite coatings

Show Author's information Yilong REN1Lin ZHANG1Guoxin XIE1( )Zhanbo LI1Hao CHEN1Hanjun GONG1Wenhu XU2Dan GUO1Jianbin LUO1( )
State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
School of Mechatronics Engineering, Key Laboratory of Tribology, Nanchang University, Nanchang, Jiangxi 33003, China

Abstract

Self-lubricating polymer composite coatings, with tailorable tribological and mechanical properties, have been widely employed on mechanical parts to reduce friction and wear, which saves energy and improves the overall performance for applications such as aerospace satellite parts, shafts, gears, and bushings. The addition of functional fillers can overcome the limitations of single-polymer coatings and extend the service life of the coatings by providing a combination of low friction, high wear resistance, high load bearing, high temperature resistance, and high adhesion. This paper compares the heat resistance, and the tribological and mechanical properties of common polymer matrices, as well as the categories of functional fillers that improve the coating performance. Applicable scopes, process parameters, advantages, and limitations of the preparation methods of polymer coatings are discussed in detail. The tribological properties of the composite coatings with different matrices and fillers are compared, and the lubrication mechanisms are analyzed. Fillers reduce friction by promoting the formation of transfer films or liquid shear films. Improvement of the mechanical properties of the composite coatings with fillers of different morphologies is described in terms of strengthening and toughening mechanisms, including a stress transfer mechanism, shear yielding, crack bridging, and interfacial debonding. The test and enhancement methods for the adhesion properties between the coating and substrate are discussed. The coating adhesion can be enhanced through mechanical treatment, chemical treatment, and energy treatment of the substrate. Finally, we propose the design strategies for high-performance polymer composite coating systems adapted to specific operating conditions, and the limitations of current polymer composite coating research are identified.

Keywords:

polymer coatings, tribological properties, mechanical properties, adhesion properties, coating design
Received: 25 April 2020 Revised: 10 July 2020 Accepted: 18 August 2020 Published: 28 November 2020 Issue date: June 2021
References(215)
[1]
Wang C, Brown G O, Burris D L, Korley L S T J, Epps III T H. Coating architects: Manipulating multiscale structures to optimize interfacial properties for coating applications. ACS Appl Polym Mater 1(9): 2249-2266 (2019)
[2]
Donnet C, Erdemir A. Solid lubricant coatings: Recent developments and future trends. Tribol Lett 17(3): 389-397 (2004)
[3]
Scharf T W, Prasad S V. Solid lubricants: A review. J Mater Sci 48(2): 511-531 (2013)
[4]
Sawyer W G, Freudenberg K D, Bhimaraj P, Schadler L S. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254(5-6): 573-580 (2003)
[5]
Yuan H, Yang S R, Liu X H, Wang Z F, Ma L M, Hou K M, Yang Z G, Wang J Q. Polyimide-based lubricating coatings synergistically enhanced by MoS2@HCNF hybrid. Composites Part A 102: 9-17 (2017)
[6]
Pan B L, Zhao J, Zhang Y Q, Zhang Y Z. Wear performance and mechanisms of polyphenylene sulfide/ polytetrafluoroethylene wax composite coatings reinforced by graphene. J Macromol Sci Part B 51(6): 1218-1227 (2012)
[7]
[8]
Wan Y J, Gong L X, Tang L C, Wu L B, Jiang J X. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Composites Part A 64: 79-89 (2014)
[9]
Yang H J, Mo Q F, Li W Z, Gu F M. Preparation and properties of self-healing and self-lubricating epoxy coatings with polyurethane microcapsules containing bifunctional linseed oil. Polymers 11(10): 1578 (2019)
[10]
Zhang L, Xie G X, Wu S, Peng S G, Zhang X Q, Guo D, Wen S Z, Luo J B. Ultralow friction polymer composites incorporated with monodispersed oil microcapsules. Friction 9(1): 29-40 (2021)
[11]
Yeh M K, Tai N H, Lin Y J. Glass transition temperature of phenolic-based nanocomposites reinforced by MWNTs and carbon fibers. Key Eng Mater 334-335: 713-716 (2007)
[12]
[13]
[14]
Ahmadijokani F, Shojaei A, Arjmand M, Alaei Y, Yan N. Effect of short carbon fiber on thermal, mechanical and tribological behavior of phenolic-based brake friction materials. Composites Part B 168: 98-105 (2019)
[15]
Frich D, Goranov K, Schneggenburger L, Economy J. Novel high-temperature aromatic copolyester thermosets: Synthesis, characterization, and physical properties. Macromolecules 29(24): 7734-7739 (1996)
[16]
Lan P X, Meyer J L, Economy J, Polycarpou A A. Unlubricated tribological performance of Aromatic Thermosetting Polyester (ATSP) coatings under different temperature conditions. Tribol Lett 61(1): 10 (2016)
[17]
[18]
Lima A M F, De Castro V G, Borges R S, Silva G G. Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites. Polímeros 22(2): 117-124 (2012)
[19]
[20]
Tayfun U, Dogan M, Bayramli E. Influence of surface modifications of flax fiber on mechanical and flow properties of thermoplastic polyurethane based eco-composites. J Nat Fibers 13(3): 309-320 (2016)
[21]
Zhang D Y, Ho J K L, Dong G N, Zhang H, Hua M. Tribological properties of Tin-based Babbitt bearing alloy with polyurethane coating under dry and starved lubrication conditions. Tribol Int 90: 22-31 (2015)
[22]
Yoonessi M, Shi Y, Scheiman D A, Lebron-Colon M, Tigelaar D M, Weiss R A, Meador M A. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 6(9): 7644-7655 (2012)
[23]
[24]
Wang C Y, Lan Y F, Yu W T, Li X, Qian Y, Liu H S. Preparation of amino-functionalized graphene oxide/ polyimide composite films with improved mechanical, thermal and hydrophobic properties. Appl Surf Sci 362: 11-19 (2016)
[25]
Wu X, Zhang Y, Du P, Jin Z Y, Zhao H C, Wang L P. Synthesis, characterization and properties of graphene-reinforced polyimide coatings. New J Chem 43(15): 5697-5705 (2019)
[26]
Blumm J, Lindemann A, Meyer M, Strasser C. Characterization of PTFE using advanced thermal analysis techniques. Int J Thermophys 31(10): 1919-1927 (2010)
[27]
Aderikha V N, Shapovalov V A, Pleskachevskii Y M. Strength characteristics, structure and wear resistance of ptfe-commercial carbon composites. J Frict Wear 29(2): 120-126 (2008)
[28]
Beckford S, Cai J Y, Fleming R A, Zou M. The effects of graphite filler on the tribological properties of polydopamine/PTFE coatings. Tribol Lett 64(3): 42 (2016)
[29]
Beckford S, Cai J Y, Chen J Y, Zou M. Use of Au nanoparticle-filled PTFE films to produce low-friction and low-wear surface coatings. Tribol Lett 56(2): 223-230 (2014)
[30]
Belyamani I, Hassan M K. Effect of different phosphate glass compositions on the process-induced macromolecular dynamics of polyamide 66. Polymers 12(5): 1179 (2020)
[31]
[32]
[33]
Mu B, Wang Q H, Wang T M, Wang H G, Jian L Q. The friction and wear properties of clay filled PA66. Polym Eng Sci 48(1): 203-209 (2008)
[34]
Sohel M A, Mandal A, Mondal A, Pan S, SenGupta A. Thermal analysis of ABS/PA6 polymer blend using differential scanning calorimetry. J Therm Anal Calorim 129(3): 1689-1695 (2017)
[35]
Sun H Y, Jiang F, Lei F, Chen L, Zhang H, Leng J, Sun D Z. Graphite fluoride reinforced PA6 composites: Crystallization and mechanical properties. Mater Today Commun 16: 217-225 (2018)
[36]
Zhou S F, Zhang Q X, Huang J, Ding D. Friction and wear behaviors of polyamide-based composites blended with polyphenylene sulfide. J Thermoplast Compos Mater 27(7): 977-991 (2014)
[37]
Diaham S, Locatelli M L. Novel high glass transition polyamide-imide: Tg influence on electrical conductivity at high temperature. IEEE Trans Dielectr Electr Insul 22(5): 3053-3058 (2015)
[38]
[39]
[40]
[41]
Saleem A, Frormann L, Iqbal A. High performance thermoplastic composites: Study on the mechanical, thermal, and electrical resistivity properties of carbon fiber-reinforced polyetheretherketone and polyethersulphone. Polym Compos 28(6): 785-796 (2007)
[42]
[43]
Pan G L, Guo Q, Tian A G, He Z Q. Mechanical behaviors of Al2O3 nanoparticles reinforced polyetheretherketone. Mater Sci Eng: A 492(1-2): 383-391 (2008)
[44]
Zhang G, Liao H, Li H, Mateus C, Bordes J M, Coddet C. On dry sliding friction and wear behaviour of PEEK and PEEK/SiC-composite coatings. Wear 260(6): 594-600 (2006)
[45]
Hou X H, Shan C X, Choy K L. Microstructures and tribological properties of PEEK-based nanocomposite coatings incorporating inorganic fullerene-like nanoparticles. Surf Coat Technol 202(11): 2287-2291 (2008)
[46]
You Z P, Li D G. The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites. Mater Lett 112: 197-199 (2013)
[47]
Suñer S, Joffe R, Tipper J L, Emami N. Ultra high molecular weight polyethylene/graphene oxide nanocomposites: Thermal, mechanical and wettability characterisation. Composites Part B 78: 185-191 (2015)
[48]
Pang W C, Ni Z F, Chen G M, Huang G D, Huang H D, Zhao Y W. Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites. RSC Adv 5(77): 63063-63072 (2015)
[49]
Azam M U, Samad M A. A novel organoclay reinforced UHMWPE nanocomposite coating for tribological applications. Prog Org Coat 118: 97-107 (2018)
[50]
Samad M A, Sinha S K. Nanocomposite UHMWPE-CNT polymer coatings for boundary lubrication on aluminium substrates. Tribol Lett 38(3): 301-311 (2010)
[51]
Zhang R C, Li R, Lu A, Jin Z J, Liu B Q, Xu Z B. The glass transition temperature of poly(phenylene sulfide) with various crystallinities. Polym Int 62(3): 449-453 (2013)
[52]
Chukov D, Nematulloev S, Zadorozhnyy M, Tcherdyntsev V, Stepashkin A, Zherebtsov D. Structure, mechanical and thermal properties of polyphenylene sulfide and polysulfone impregnated carbon fiber composites. Polymers 11(4): 684 (2019)
[53]
[54]
Wu Y, Liu Q, Heng Z G, Zou H W, Chen Y, Liang M. Improved mechanical properties of graphene oxide/short carbon fiber-polyphenylene sulfide composites. Polym Compos 40(10): 3866-3876 (2019)
[55]
Xu H Y, Feng Z Z, Chen J M, Zhou H D. Tribological behavior of the carbon fiber reinforced polyphenylene sulfide (PPS) composite coating under dry sliding and water lubrication. Mater Sci Eng: A 416(1-2): 66-73 (2006)
[56]
Gamp K, Thomann Y, Friedrich C, Hebel A, Markgraf K, Hückstädt H, Kurz K, Mülhaupt R. Improving melt flow of polyoxymethylene ("High-Speed POM"): Additive design, melt rheology, and in situ composition gradient formation. Macromol Mater Eng 299(1): 51-64 (2014)
[57]
[58]
Espinach F X, Granda L A, Tarres Q, Duran J, Fullana-I-Palmer P, Mutjé P. Mechanical and micromechanical tensile strength of eucalyptus bleached fibers reinforced polyoxymethylene composites. Composites Part B 116: 333-339 (2017)
[59]
Huang T, Lu R G, Wang H Y, Ma Y N, Tian J S, Li T S. Investigation on the tribological properties of POM modified by nano-PTFE. J Macromol Sci Part B 50(7): 1235-1248 (2011)
[60]
Fakhar A, Razzaghi-Kashani M, Mehranpour M. Improvements in tribological properties of polyoxy¬ methylene by aramid short fiber and polytetrafluoroe¬ thylene. Iran Polym J 22(1): 53-59 (2013)
[61]
Wang G L, Yu D M, Kelkar A D, Zhang L F. Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Prog Polym Sci 75: 73-107 (2017)
[62]
Segatelli M G, Pagotto Yoshida I V, do Carmo Gonçalves M. Natural silica fiber as reinforcing filler of nylon 6. Composites Part B 41(1): 98-105 (2010)
[63]
Coleman J N, Khan U, Gun'ko Y K. Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6): 689-706 (2006)
[64]
Podsiadlo P, Kaushik A K, Arruda E M, Waas A M, Shim B S, Xu J D, Nandivada H, Pumplin B G, Lahann J, Ramamoorthy A, et al. Ultrastrong and stiff layered polymer nanocomposites. Science 318(5847): 80-83 (2007)
[65]
Panin S V, Duc Anh N, Kornienko L A, Ivanova L R, Ovechkin B B. Comparison on Efficiency of Solid-Lubricant Fillers for Polyetheretherketone-Based Composites. AIP Conference Proceedings 2051: 020232 (2018)
[66]
Cai P, Wang T M, Wang Q H. Effect of several solid lubricants on the mechanical and tribological properties of phenolic resin-based composites. Polym Compos 36(12): 2203-2211 (2015)
[67]
Zalaznik M, Kalin M, Novak S, Jakša G. Effect of the type, size and concentration of solid lubricants on the tribological properties of the polymer PEEK. Wear 364-365: 31-39 (2016)
[68]
Guo Q B, Rong M Z, Jia G L, Lau K T, Zhang M Q. Sliding wear performance of nano-SiO2/short carbon fiber/epoxy hybrid composites. Wear 266(7-8): 658-665 (2009)
[69]
Meng H, Sui G X, Xie G Y, Yang R. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under dry sliding and water lubricated condition. Compos Sci Technol 69(5): 606-611 (2009)
[70]
Song H J, Zhang Z Z. Investigation of the tribological properties of polyfluo wax/polyurethane composite coating filled with nano-SiC or nano-ZrO2. Mater Sci Eng: A 426(1-2): 59-65 (2006)
[71]
Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick A K. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5): 638-670 (2011)
[72]
Zhai W Z, Srikanth N, Kong L B, Zhou K. Carbon nanomaterials in tribology. Carbon 119: 150-171 (2017)
[73]
Zhai W Z, Zhou K. Nanomaterials in superlubricity. Adv Funct Mater 29(28): 1806395 (2019)
[74]
Liu D, Zhao W J, Liu S, Cen Q H, Xue Q J. Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene. Surf Coat Technol 286: 354-364 (2016)
[75]
Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385-388 (2008)
[76]
Lee G H, Cooper R C, An S J, Lee S, Van Der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340(6136): 1073-1076 (2013)
[77]
Li X, Chen B B, Jia Y H, Li X F, Yang J, Li C S, Yan F Y. Enhanced tribological properties of epoxy-based lubricating coatings using carbon nanotubes-ZnS hybrid. Surf Coat Technol 344: 154-162 (2018)
[78]
Lee J Y, Lim D S. Tribological behavior of PTFE film with nanodiamond. Surf Coat Technol 188-189: 534-538 (2004)
[79]
Lee J Y, Lim D P, Lim D S. Tribological behavior of PTFE nanocomposite films reinforced with carbon nanoparticles. Composites Part B 38(7-8): 810-816 (2007)
[80]
Miyake S, Sekine Y, Noshiro J, Watanabe S. Low-friction and long-life solid lubricant films structured of nanoperiod tungsten disulfide and molybdenum disulfide multilayer. Jpn J Appl Phys 43(7A): 4338-4343 (2004)
[81]
An V, Irtegov Y, De Izarra C. Study of tribological properties of nanolamellar WS2 and MoS2 as additives to lubricants. J Nanomater 2014: 865839 (2014)
[82]
Agag T, Koga T, Takeichi T. Studies on thermal and mechanical properties of polyimide-clay nanocomposites. Polymer 42(8): 3399-3408 (2001)
[83]
Wang H, Zeng C C, Elkovitch M, Lee L J, Koelling K W. Processing and properties of polymeric nano-composites. Polym Eng Sci 41(11): 2036-2046 (2001)
[84]
Xu Q J, Feng X T, Liu J H, Gong P J. Preparation of Ag nanoparticles-reinforced polyamide 6 nanocomposites by in situ polymerization and investigation of its properties. Pol J Chem Technol 19(4): 36-40 (2017)
[85]
Hidayah I N, Mariatti M. Properties of single and hybrid aluminum and silver fillers filled high-density polyethylene composites. J Thermoplast Compos Mater 25(2): 209-221 (2012)
[86]
Li Z H, Wang D, Zhang M, Zhao L. Enhancement of the thermal conductivity of polymer composites with Ag-graphene hybrids as fillers. Phys Status Solidi A 211(9): 2142-2149 (2014)
[87]
Chen Y C, Zhou S X, Yang H H, Wu L M. Structure and properties of polyurethane/nanosilica composites. J Appl Polym Sci 95(5): 1032-1039 (2005)
[88]
Zhang G, Schlarb A K, Tria S, Elkedim O. Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique. Compos Sci Technol 68(15-16): 3073-3080 (2008)
[89]
Wang Y, Gong J, Yang D Y, Gao G, Ren J F, Mu B, Chen S S, Wang H G. Tribological behavior of nano-Al2O3-reinforced PPS-PTFE composites. Tribol Trans 57(2): 173-181 (2014)
[90]
Vaisakh S S, Mohammed A A P, Hassanzadeh M, Tortorici J F, Metz R, Ananthakumar S. Effect of nano-modified SiO2/Al2O3 mixed-matrix micro-composite fillers on thermal, mechanical, and tribological properties of epoxy polymers. Polym Adv Technol 27(7): 905-914 (2016)
[91]
Song H H, Zhang Z Z, Men X H. The tribological behaviors of the polyurethane coating filled with nano-SiO2 under different lubrication conditions. Composites Part A 39(2): 188-194 (2008)
[92]
Li H Y, Cui Y X, Wang H Y, Zhu Y J, Wang B H. Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating. Colloids Surf A 518: 181-187 (2017)
[93]
Li H Y, Cui Y X, Li Z K, Zhu Y J, Wang H Y. Fabrication of microcapsules containing dual-functional tung oil and properties suitable for self-healing and self-lubricating coatings. Prog Org Coat 115: 164-171 (2018)
[94]
Yang M M, Zhu X T, Ren G N, Men X H, Guo F, Li P L, Zhang Z Z. Tribological behaviors of polyurethane composite coatings filled with ionic liquid core/silica gel shell microcapsules. Tribol Lett 58(1): 9 (2015)
[95]
Li H Y, Li S, Li F B, Li Z K, Wang H Y. Fabrication of SiO2 wrapped polystyrene microcapsules by Pickering polymerization for self-lubricating coatings. J Colloid Interface Sci 528: 92-99 (2018)
[96]
Pathania A, Arya R K, Ahuja S. Crosslinked polymeric coatings: Preparation, characterization, and diffusion studies. Prog Org Coat 105: 149-162 (2017)
[97]
Wu X, Wyman I, Zhang G W, Lin J, Liu Z Q, Wang Y, Hu H. Preparation of superamphiphobic polymer-based coatings via spray- and dip-coating strategies. Prog Org Coat 90: 463-471 (2016)
[98]
Moridi A, Hassani-Gangaraj S M, Guagliano M, Dao M. Cold spray coating: Review of material systems and future perspectives. Surf Eng 30(6): 369-395 (2014)
[99]
Petrovicova E, Schadler L S. Thermal spraying of polymers. Int Mater Rev 47(4): 169-190 (2002)
[100]
Na J Y, Kang B, Sin D H, Cho K, Park Y D. Understanding solidification of polythiophene thin films during spin-coating: Effects of spin-coating time and processing additives. Sci Rep 5(1): 13288 (2015)
[101]
Hou L T, Wang E G, Bergqvist J, Andersson B V, Wang Z Q, Müller C, Campoy-Quiles M, Andersson M R, Zhang F L, Inganäs O. Lateral phase separation gradients in spin-coated thin films of high-performance polymer: Fullerene photovoltaic blends. Adv Funct Mater 21(16): 3169-3175 (2011)
[102]
Campbell S E, Collins M, Xie L, Belbruno J J. Surface morphology of spin-coated molecularly imprinted polymer films. Surf Interface Anal 41(4): 347-356 (2009)
[103]
Singh-Beemat J, Iroh J O. The effect of morphology on the corrosion inhibition and mechanical properties of hybrid polymer coatings. J Appl Polym Sci 128(3): 1616-1624 (2013)
[104]
Dário A F, Macia H B, Petri D F S. Nanostructures on spin-coated polymer films controlled by solvent composition and polymer molecular weight. Thin Solid Films 524: 185-190 (2012)
[105]
Li X, Han Y C, An L J. Surface morphology control of immiscible polymer-blend thin films. Polymer 44(26): 8155-8165 (2003)
[106]
Li Y, Hu K, Han X, Yang Q Y, Xiong Y F, Bai Y H, Guo X, Cui Y S, Yuan C S, Ge H X, et al. Phase separation of silicon-containing polymer/polystyrene blends in spin-coated films. Langmuir 32(15): 3670-3678 (2016)
[107]
Cui L, Li X, Han Y C. Polymer concentration, shear and stretch field effects on the surface morphology evolution during the spin-coating. Appl Surf Sci 252(23): 8156-8162 (2006)
[108]
Petri D F S. Characterization of spin-coated polymer films. J Braz Chem Soc 13(5): 695-699 (2002)
[109]
Roy S, Ansari K J, Jampa S S K, Vutukuri P, Mukherjee R. Influence of substrate wettability on the morphology of thin polymer films spin-coated on topographically patterned substrates. ACS Appl Mater Interfaces 4(4): 1887-1896 (2012)
[110]
Vital A, Vayer M, Tillocher T, Dussart R, Boufnichel M, Sinturel C. Morphology control in thin films of PS: PLA homopolymer blends by dip-coating deposition. Appl Surf Sci 393: 127-133 (2017)
[111]
Jiang J H, Zhu L P, Zhu L J, Zhu B K, Xu Y Y. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 27(23): 14180-14187 (2011)
[112]
Van Stam J, Van Fraeyenhoven P, Andersen M, Moons E. Comparing morphology in dip-coated and spin-coated polyfluorene: Fullerene films. Proceedings of SPIE 9942: 99420D (2016)
[113]
Van Stam J, Van Fraeyenhoven P, Andersen M, Moons E. Comparing morphology in dip-coated and spin-coated polyfluorene: Fullerene films. In Proceedings of SPIE 9942, Organic Photovoltaics XVII, San Diego, 2016: 99420D.
[114]
Leivo E, Wilenius T, Kinos T, Vuoristo P, Mäntylä T. Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings. Prog Org Coat 49(1): 69-73 (2004)
[115]
Han J, Ding S Y, Zheng W G, Li W Y, Li H. Microstructure and anti-wear and corrosion performances of novel UHMWPE/graphene-nanosheet composite coatings deposited by flame spraying. Polym Adv Technol 24(10): 888-894 (2013)
[116]
Bao Y, Gawne D T, Vesely D, Bevis M J. Production of polymer matrix composite coatings by thermal spraying. Trans IMF 72(3): 110-113 (1994)
[117]
Petrovicova E, Knight R, Schadler L S, Twardowski T E. Nylon 11/silica nanocomposite coatings applied by the HVOF process. I. Microstructure and morphology. J Appl Polym Sci 77(8): 1684-1699 (2000)
DOI
[118]
Khalkhali Z, Rothstein J P. Characterization of the cold spray deposition of a wide variety of polymeric powders. Surf Coat Technol 383: 125251 (2020)
[119]
Baum M J, Heepe L, Gorb S N. Friction behavior of a microstructured polymer surface inspired by snake skin. Beilstein J Nanotechnol 5: 83-97 (2014)
[120]
Song J F, Liu X L, Zhao G, Ding Q J, Qiu J H. Effect of surface roughness and reciprocating time on the tribological properties of the polyimide composites. Polym Eng Sci 59(3): 483-489 (2019)
[121]
Zhang G, Liao H L, Coddet C. Friction and wear behavior of PEEK and its composite coatings. Tribol Interface Eng Ser 55: 458-482. (2008)
[122]
Zhang G, Häusler I, Österle W, Wetzel B, Jim B. Formation and function mechanisms of nanostructured tribofilms of epoxy-based hybrid nanocomposites. Wear 342-343: 181-188 (2015)
[123]
Fan X F, Li G T, Guo Y X, Zhang L G, Xu Y K, Zhao F Y, Zhang G. Role of reinforcement types and silica nanoparticles on tribofilm growth at PTFE-Steel interface. Tribol Int 143: 106035 (2020)
[124]
Hu C, Qi H M, Yu J X, Zhang G, Zhang Y F, He H T. Significant improvement on tribological performance of polyimide composites by tuning the tribofilm nanostructures. J Mater Process Technol 281: 116602 (2020)
[125]
Zhang G, Österle W, Jim B, Häusler I, Hesse R, Wetzel B. The role of surface topography in the evolving microstructure and functionality of tribofilms of an epoxy-based nanocomposite. Wear 364-365: 48-56 (2016)
[126]
Guo L H, Zhang G, Wang D A, Zhao F Y, Wang T M, Wang Q H. Significance of combined functional nanoparticles for enhancing tribological performance of PEEK reinforced with carbon fibers. Composites Part A 102: 400-413 (2017)
[127]
Biswas S K, Vijayan K. Friction and wear of ptfe - A review. Wear 158(1-2): 193-211 (1992)
[128]
Nemati N, Emamy M, Yau S, Kim J K, Kim D E. High temperature friction and wear properties of graphene oxide/polytetrafluoroethylene composite coatings deposited on stainless steel. RSC Adv 6(7): 5977-5987 (2016)
[129]
Ding Q J, Zhang Y D, Zhao G, Wang F. Properties of POB reinforced PTFE-based friction material for ultrasonic motors. J Polym Eng 37(7): 681-687 (2017)
[130]
Lim W S, Khadem M, Anle Y, Kim D E. Fabrication of polytetrafluoroethylene-carbon nanotube composite coatings for friction and wear reduction. Polym Compos 39(S2): E710-E722 (2018)
[131]
McCook N L, Burris D L, Bourne G R, Steffens J, Hanrahan J R, Sawyer W G. Wear resistant solid lubricant coating made from PTFE and epoxy. Tribol Lett 18(1): 119-124 (2005)
[132]
Peng S G, Zhang L, Xie G X, Guo Y, Si L N, Luo J B. Friction and wear behavior of PTFE coatings modified with poly (methyl methacrylate). Composites Part B 172: 316-322 (2019)
[133]
Su F H, Zhang S H. Tribological properties of polyimide coatings filled with PTFE and surface-modified nano-Si3N4. J Appl Polym Sci 131(12): 40410 (2014)
[134]
Luo Z Z, Zhang Z Z, Wang W J, Liu W M. Effect of polytetrafluoroethylene gradient-distribution on the hydrophobic and tribological properties of polyphenylene sulfide composite coating. Surf Coat Technol 203(10-11): 1516-1522 (2009)
[135]
Yu C Y, Wan H Q, Chen L, Li H X, Cui H X, Ju P F, Zhou H D, Chen J M. Marvelous abilities for polyhedral oligomeric silsesquioxane to improve tribological properties of polyamide-imide/polytetrafluoroethylene coatings. J Mater Sci 53(17): 12616-12627 (2018)
[136]
Akram M W, Meyer J L, Polycarpou A A. Tribological interactions of advanced polymeric coatings with polyalkylene glycol lubricant and r1234yf refrigerant. Tribol Int 97: 200-211 (2016)
[137]
Bashandeh K, Lan P X, Meyer J L, Polycarpou A A. Tribological performance of graphene and PTFE solid lubricants for polymer coatings at elevated temperatures. Tribol Lett 67(3): 99 (2019)
[138]
Yu C Y, Ju P F, Wan H Q, Chen L, Li H X, Zhou H D, Chen J M. POSS-Grafted PAI/MoS2 coatings for simultaneously improved tribological properties and atomic oxygen resistance. Ind Eng Chem Res 58(36): 17027-17037 (2019)
[139]
Xu H Y, Feng Z Z, Chen J M, Zhou H D. Tribological behavior of the polyamide composite coating filled with different fillers under dry sliding. J Appl Polym Sci 104(4): 2554-2560 (2007)
[140]
Wang W, Xie G X, Luo J B. Black phosphorus as a new lubricant. Friction 6(1): 116-142 (2018)
[141]
Lv Y, Wang W, Xie G X, Luo J B. Self-lubricating PTFE-based composites with black phosphorus nanosheets. Tribol Lett 66(2): 61 (2018)
[142]
Wang W, Xie G X, Luo J B. Superlubricity of black phosphorus as lubricant additive. ACS Appl Mater Interfaces 10(49): 43203-43210 (2018)
[143]
Bai L C, Liu B, Srikanth N, Tian Y, Zhou K. Nano-friction behavior of phosphorene. Nanotechnology 28(35): 355704 (2017)
[144]
Ren X Y, Yang X, Xie G X, Luo J B. Black phosphorus quantum dots in aqueous ethylene glycol for macroscale superlubricity. ACS Appl Nano Mater 3(5): 4799-4809 (2020)
[145]
Peng S G, Guo Y, Xie G X, Luo J B. Tribological behavior of polytetrafluoroethylene coating reinforced with black phosphorus nanoparticles. Appl Surf Sci 441: 670-677 (2018)
[146]
Wu S, He F, Xie G X, Bian Z L, Luo J B, Wen S Z. Black phosphorus: Degradation favors lubrication. Nano Lett 18(9): 5618-5627 (2018)
[147]
Wu S, He F, Xie G X, Bian Z L, Ren Y L, Liu X Y, Yang H J, Guo D, Zhang L, Wen S Z, et al. Super-slippery degraded black phosphorus/silicon dioxide interface. ACS Appl Mater Interfaces 12(6): 7717-7726 (2020)
[148]
Kurdi A, Li C. Comparative tribological and mechanical property analysis of nano-silica and nano-rubber reinforced epoxy composites. Appl Mech Mater 875: 53-60 (2018)
[149]
Zhang G L, Xie G X, Si L N, Wen S Z, Guo D. Ultralow friction self-lubricating nanocomposites with mesoporous metal-organic frameworks as smart nanocontainers for lubricants. ACS Appl Mater Interfaces 9(43): 38146-38152 (2017)
[150]
Li H Y, Wang Q, Wang H Y, Cui Y X, Zhu Y J, Wang B H. Fabrication of thermally stable polysulfone microcapsules containing [EMIm] [NTf2] ionic liquid for enhancement of in situ self-lubrication effect of epoxy. Macromol Mater Eng 301(12): 1473-1481 (2016)
[151]
Li H Y, Li S, Li Z K, Zhu Y J, Wang H Y. Polysulfone/SiO2 hybrid shell microcapsules synthesized by the combination of pickering emulsification and the solvent evaporation technique and their application in self-lubricating composites. Langmuir 33(49): 14149-14155 (2017)
[152]
Li K K, Li H Y, Cui Y X, Li Z K, Ji J, Feng Y Y, Chen S J, Zhang M J, Wang H Y. Dual-functional coatings with self-lubricating and self-healing properties by combining Poly(urea-formaldehyde)/SiO2 hybrid microcapsules containing linseed oil. Ind Eng Chem Res 58(48): 22032-22039 (2019)
[153]
Kurdi A, Chang L. Recent advances in high performance polymers-tribological aspects. Lubricants 7(1): 2 (2019)
[154]
Qi H M, Zhang G, Chang L, Zhao F Y, Wang T M, Wang Q H. Ultralow friction and wear of polymer composites under extreme unlubricated sliding conditions. Adv Mater Interfaces 4(13): 1601171 (2017)
[155]
Zhang Y C, Zhang D Y, Wei X, Zhong S J, Wang J L. Enhanced tribological properties of polymer composite coating containing graphene at room and elevated temperatures. Coatings 8(3): 91 (2018)
[156]
Song H J, Zhang Z Z, Men X H. Tribological behavior of polyurethane-based composite coating reinforced with TiO2 nanotubes. Eur Polym J 44(4): 1012-1022 (2008)
[157]
Song H J, Zhang Z Z, Men X H. Surface-modified carbon nanotubes and the effect of their addition on the tribological behavior of a polyurethane coating. Eur Polym J 43(10): 4092-4102 (2007)
[158]
Pan G L, Guo Q, Ding J, Zhang W D, Wang X M. Tribological behaviors of graphite/epoxy two-phase composite coatings. Tribol Int 43(8): 1318-1325 (2010)
[159]
Wang C J, Wang H Y, Li M L, Liu Z J, Lv C J, Zhu Y J, Bao N Z. Anti-corrosion and wear resistance properties of polymer composite coatings: Effect of oily functional fillers. J Taiwan Inst Chem Eng 85: 248-256 (2018)
[160]
Song H H, Zhang Z Z, Luo Z Z. Effects of solid lubricants on friction and wear behaviors of the phenolic coating under different friction conditions. Surf Coat Technol 201(6): 2760-2767 (2006)
[161]
Yang M M, Zhang Z Z, Zhu X T, Men X H, Ren G N. In situ reduction and functionalization of graphene oxide to improve the tribological behavior of a phenol formaldehyde composite coating. Friction 3(1): 72-81 (2015)
[162]
Wang J, Zhao W Z, Guo C W. Fabrication and properties of a lubrication composite coating based on poly (p-hydroxybenzoic acid) (PHBA). J Mater Sci 44(1): 227-233 (2009)
[163]
Ye X Y, Liu X H, Yang Z G, Wang Z F, Wang H G, Wang J Q, Yang S R. Tribological properties of fluorinated graphene reinforced polyimide composite coatings under different lubricated conditions. Composites Part A 81: 282-288 (2016)
[164]
Pozdnyakov A O, Kudryavtsev V V, Friedrich K. Sliding wear of polyimide-C60 composite coatings. Wear 254(5-6): 501-513 (2003)
[165]
Pei X Q, Bennewitz R, Kasper C, Tlatlik H, Bentz D, Becker-Willinger C. Tribological synergy of filler components in multifunctional polyimide coatings. Adv Eng Mater 19(1): 1600363 (2017)
[166]
Hedayati M, Salehi M, Bagheri R, Panjepour M, Naeimi F. Tribological and mechanical properties of amorphous and semi-crystalline PEEK/SiO2 nanocomposite coatings deposited on the plain carbon steel by electrostatic powder spray technique. Prog Org Coat 74(1): 50-58 (2012)
[167]
Samad M A, Sinha S K. Mechanical, thermal and tribological characterization of a UHMWPE film reinforced with carbon nanotubes coated on steel. Tribol Int 44(12): 1932-1941 (2011)
[168]
Aliyu I K, Mohammed A S, Al-Qutub A. Tribological performance of UHMWPE/GNPs nanocomposite coatings for solid lubrication in bearing applications. Tribol Lett 66(4): 144 (2018)
[169]
Beckford S, Mathurin L, Chen J Y, Fleming R A, Zou M. The effects of polydopamine coated Cu nanoparticles on the tribological properties of polydopamine/PTFE coatings. Tribol Int 103: 87-94 (2016)
[170]
Pryamitsyn V, Ganesan V. Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromolecules 39(2): 844-856 (2006)
[171]
Mujtaba A, Keller M, Ilisch S, Radusch H J, Beiner M, Thurn-Albrecht T, Saalwächter K. Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber-silica nanocomposites. ACS Macro Lett 3(5): 481-485 (2014)
[172]
Chen Q, Gong S S, Moll J, Zhao D, Kumar S K, Colby R H. Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett 4(4): 398-402 (2015)
[173]
Papon A, Montes H, Lequeux F, Oberdisse J, Saalwächter K, Guy L. Solid particles in an elastomer matrix: Impact of colloid dispersion and polymer mobility modification on the mechanical properties. Soft Matter 8(15): 4090-4096 (2012)
[174]
Papageorgiou D G, Li Z L, Liu M F, Kinloch I A, Young R J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 12(4): 2228-2267 (2020)
[175]
Chih A, Ansón-Casaos A, Puértolas J A. Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol Int 116: 295-302 (2017)
[176]
Fu S Y, Feng X Q, Lauke B, Mai Y W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites Part B 39(6): 933-961 (2008)
[177]
Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J. Nanofillers in polymeric matrix: A study on silica reinforced PA6. Polymer 42(21): 8759-8768 (2001)
[178]
Maillard D, Kumar S K, Fragneaud B, Kysar J W, Rungta A, Benicewicz B C, Deng H, Brinson L C, Douglas J F. Mechanical properties of thin glassy polymer films filled with spherical polymer-grafted nanoparticles. Nano Lett 12(8): 3909-3914 (2012)
[179]
Mortazavian S, Fatemi A. Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Composites Part B 72: 116-129 (2015)
[180]
Bonderer L J, Studart A R, Gauckler L J. Bioinspired design and assembly of platelet reinforced polymer films. Science 319(5866): 1069-1073 (2008)
[181]
Chan M L, Lau K T, Wong T T, Ho M P, Hui D. Mechanism of reinforcement in a nanoclay/polymer composite. Composites Part B 42(6): 1708-1712 (2011)
[182]
Shelley J S, Mather P T, DeVries K L. Reinforcement and environmental degradation of nylon-6/clay nanocomposites. Polymer 42(13): 5849-5858 (2001)
[183]
Cheng S W, Bocharova V, Belianinov A, Xiong S M, Kisliuk A, Somnath S, Holt A P, Ovchinnikova O S, Jesse S, Martin H, et al. Unraveling the mechanism of nanoscale mechanical reinforcement in glassy polymer nanocomposites. Nano Lett 16(6): 3630-3637 (2016)
[184]
Okumura T, Sonobe K, Ohashi A, Watanabe H, Watanabe K, Oyamada H, Aramaki M, Ougizawa T. Synthesis of polyamide-hydroxyapatite nanocomposites. Polym Eng Sci 60(7): 1699-1711 (2020)
[185]
Scotti R, Conzatti L, D'Arienzo M, Di Credico B, Giannini L, Hanel T, Stagnaro P, Susanna A, Tadiello L, Morazzoni F. Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: Role of the particle morphology on the filler reinforcing effect. Polymer 55(6): 1497-1506 (2014)
[186]
Pradhan S, Lach R, Le H H, Grellmann W, Radusch H J, Adhikari R. Effect of filler dimensionality on mechanical properties of nanofiller reinforced polyolefin elastomers. Int Sch Res Not 2013: 284504 (2013)
[187]
Nadiv R, Shachar G, Peretz-Damari S, Varenik M, Levy I, Buzaglo M, Ruse E, Regev O. Performance of nano-carbon loaded polymer composites: Dimensionality matters. Carbon 126: 410-418 (2018)
[188]
Bhandari N L, Lach R, Grellmann W, Adhikari R. Depth-dependent indentation microhardness studies of different polymer nanocomposites. Macromol Symp 315(1): 44-51 (2012)
[189]
Opelt C V, Becker D, Lepienski C M, Coelho L A F. Reinforcement and toughening mechanisms in polymer nanocomposites - Carbon nanotubes and aluminum oxide. Composites Part B 75: 119-126 (2015)
[190]
Wei Y Z, Wang G S, Wu Y, Yue Y H, Wu J T, Lu C, Guo L. Bioinspired design and assembly of platelet reinforced polymer films with enhanced absorption properties. J Mater Chem A 2(15): 5516-5524 (2014)
[191]
He Y, Farokhzadeh K, Edrisy A. Characterization of thermal, mechanical and tribological properties of fluoropolymer composite coatings. J Mater Eng Perform 26(6): 2520-2534 (2017)
[192]
Su C, Xue F, Li T S, Xin Y S, Wang M M. Study on the tribological properties of carbon fabric/polyimide composites filled with SiC nanoparticles. J Macromol Sci Part B 55(6): 627-641 (2016)
[193]
Huang T, Li T S, Xin Y S, Liu P, Su C. Mechanical and tribological properties of hybrid fabric-modified polyetherimide composites. Wear 306(1-2): 64-72 (2013)
[194]
Browning R L, Lim G T, Moyse A, Sue H J, Chen H, Earls J D. Quantitative evaluation of scratch resistance of polymeric coatings based on a standardized progressive load scratch test. Surf Coat Technol 201(6): 2970-2976 (2006)
[195]
Chen X M, Shaw C, Gelman L, Grattan K T V. Advances in test and measurement of the interface adhesion and bond strengths in coating-substrate systems, emphasising blister and bulk techniques. Measurement 139: 387-402 (2019)
[196]
Hopkins C, McHugh P E, O'Dowd N P, Rochev Y, McGarry J P. A combined computational and experimental methodology to determine the adhesion properties of stent polymer coatings. Comput Mater Sci 80: 104-112 (2013)
[197]
Czarnecki L, Garbacz A, Krystosiak M. On the ultrasonic assessment of adhesion between polymer coating and concrete substrate. Cem Concr Compos 28(4): 360-369 (2006)
[198]
Van Tijum R, Vellinga W P, De Hosson J T M. Adhesion along metal-polymer interfaces during plastic deformation. J Mater Sci 42(10): 3529-3536 (2007)
[199]
Van Den Brand J, Van Gils S, Beentjes P C J, Terryn H, Sivel V, De Wit J H W. Improving the adhesion between epoxy coatings and aluminium substrates. Prog Org Coat 51(4): 339-350 (2004)
[200]
Van Dam J P B, Abrahami S T, Yilmaz A, Gonzalez-Garcia Y, Terryn H, Mol J M C. Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface. Int J Adhes Adhes 96: 102450 (2020)
[201]
Krzywiński K, Sadowski L. The effect of texturing of the surface of concrete substrate on the pull-off strength of epoxy resin coating. Coatings 9(2): 143 (2019)
[202]
Jaeho K, Choi J H, Sung M, Yu W R. Improved adhesion of metal-polymer sandwich composites using a spontaneous polymer grafting process. Funct Compos Struct 1(2): 025004 (2019)
[203]
Choi J, Cho S B, Lee B S, Joung Y K, Park K, Han D K. Improvement of interfacial adhesion of biodegradable polymers coated on metal surface by nanocoupling. Langmuir 27(23): 14232-14239 (2011)
[204]
Bedair T M, Cho Y, Kim T J, Kim Y D, Park B J, Joung Y K, Han D K. Reinforcement of interfacial adhesion of a coated polymer layer on a cobalt-chromium surface for drug-eluting stents. Langmuir 30(27): 8020-8028 (2014)
[205]
Chen H, Wang J H, Huo Q. Self-assembled monolayer of 3-aminopropyltrimethoxysilane for improved adhesion between aluminum alloy substrate and polyurethane coating. Thin Solid Films 515(18): 7181-7189 (2007)
[206]
Brostow W, Chen I K, Hnatchuk N, Hrbacek J, Hull A, Pahler R H, Srinivasan A. Enhanced adhesion of polypropylene to copper substrates. Polym Test 63: 158-162 (2017)
[207]
Dong F, Meschter S J, Cho J. Improved adhesion of polyurethane-based coatings to tin surface. J Mater Sci: Mater Electron 30(8): 7268-7279 (2019)
[208]
Rohart V, Laberge Lebel L, Dubé M. Improved adhesion between stainless steel heating element and PPS polymer in resistance welding of thermoplastic composites. Composites Part B 188: 107876 (2020)
[209]
Seul S D, Lim J M, Ha S H, Kim Y H. Adhesion enhancement of polyurethane coated leather and polyurethane foam with plasma treatment. Korean J Chem Eng 22(5): 745-749 (2005)
[210]
Mui T S M, Silva L L G, Prysiazhnyi V, Kostov K G. Polyurethane paint adhesion improvement on aluminium alloy treated by plasma jet and dielectric barrier discharge. J Adhes Sci Technol 30(2): 218-229 (2016)
[211]
Ohkubo Y, Ishihara K, Sato H, Shibahara M, Nagatani A, Honda K, Endo K, Yamamura Y. Adhesive-free adhesion between polytetrafluoroethylene (PTFE) and isobutylene-isoprene rubber (IIR) via heat-assisted plasma treatment. RSC Adv 7(11): 6432-6438 (2017)
[212]
Ohkubo Y, Nakagawa T, Endo K, Yamamura K. Influence of air contamination during heat-assisted plasma treatment on adhesion properties of polytetrafluoroethylene (PTFE). RSC Adv 9(40): 22900-22906 (2019)
[213]
Hamdi M, Saleh M N, Poulis J A. Improving the adhesion strength of polymers: Effect of surface treatments. J Adhes Sci Technol 34(17): 1853-1870 (2020)
[214]
Bai L C, Sun P P, Liu B, Liu Z S, Zhou K. Mechanical behaviors of T-carbon: A molecular dynamics study. Carbon 138: 357-362 (2018)
[215]
Liu B, Bai L C, Korznikova E A, Dmitriev S V, Law A W K, Zhou K. Thermal conductivity and tensile response of phosphorene nanosheets with vacancy defects. J Phys Chem C 121(25): 13876-13887 (2017)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 April 2020
Revised: 10 July 2020
Accepted: 18 August 2020
Published: 28 November 2020
Issue date: June 2021

Copyright

© The author(s) 2020

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51822505), Beijing Natural Science Foundation of China (Grant No. 3182010), Major Scientific Research and Development Project in Jiangxi (Grant No. 20173ABC28008), and the National Key Research and Development Program of China (Grant No. 2018YFB2000202).

Rights and permissions

The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/ 4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will nee-d to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

Return