903
Views
256
Downloads
20
Crossref
17
WoS
19
Scopus
0
CSCD
Yttria-stabilized zirconia (YSZ) coatings and Al2O3-YSZ coatings were prepared by atmospheric plasma spraying (APS). Their microstructural changes during thermal cycling were investigated via scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). It was found that the microstructure and microstructure changes of the two coatings were different, including crystallinity, grain orientation, phase, and phase transition. These differences are closely related to the thermal cycle life of the coatings. There is a relationship between crystallinity and crack size. Changes in grain orientation are related to microscopic strain and cracks. Phase transition is the direct cause of coating failure. In this study, the relationship between the changes in the coating microstructure and the thermal cycle life is discussed in detail. The failure mechanism of the coating was comprehensively analyzed from a microscopic perspective.
Yttria-stabilized zirconia (YSZ) coatings and Al2O3-YSZ coatings were prepared by atmospheric plasma spraying (APS). Their microstructural changes during thermal cycling were investigated via scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). It was found that the microstructure and microstructure changes of the two coatings were different, including crystallinity, grain orientation, phase, and phase transition. These differences are closely related to the thermal cycle life of the coatings. There is a relationship between crystallinity and crack size. Changes in grain orientation are related to microscopic strain and cracks. Phase transition is the direct cause of coating failure. In this study, the relationship between the changes in the coating microstructure and the thermal cycle life is discussed in detail. The failure mechanism of the coating was comprehensively analyzed from a microscopic perspective.
This work is supported by the National Key Technologies R&D Program of China (No. 2018YFB0704400) and Shanghai Technical Platform for Testing on Inorganic Materials (No. 19DZ2290700).
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.