806
Views
146
Downloads
76
Crossref
N/A
WoS
76
Scopus
8
CSCD
A melilite Ba2CuGe2O7 ceramic was characterized by low sintering temperature and moderate microwave dielectric properties. Sintered at 960 ℃, the Ba2CuGe2O7 ceramic had a high relative density 97%, a low relative permittivity (εr) 9.43, a quality factor (Q×f) of 20,000 GHz, and a temperature coefficient of resonance frequency (τf) -76 ppm/℃. To get a deep understanding of the relationship between composition, structure, and dielectric performances, magnesium substitution for copper in Ba2CuGe2O7 was conducted. Influences of magnesium doping on the sintering behavior, crystal structure, and microwave dielectric properties were studied. Mg doping in Ba2CuGe2O7 caused negligible changes in the macroscopic crystal structure, grain morphology, and size distribution, while induced visible variation in the local structure as revealed by Raman analysis. Microwave dielectric properties exhibit a remarkable dependence on composition. On increasing the magnesium content, the relative permittivity featured a continuous decrease, while both the quality factor and the temperature coefficient of resonance frequency increased monotonously. Such variations in dielectric performances were clarified in terms of the polarizability, packing fraction, and band valence theory.
A melilite Ba2CuGe2O7 ceramic was characterized by low sintering temperature and moderate microwave dielectric properties. Sintered at 960 ℃, the Ba2CuGe2O7 ceramic had a high relative density 97%, a low relative permittivity (εr) 9.43, a quality factor (Q×f) of 20,000 GHz, and a temperature coefficient of resonance frequency (τf) -76 ppm/℃. To get a deep understanding of the relationship between composition, structure, and dielectric performances, magnesium substitution for copper in Ba2CuGe2O7 was conducted. Influences of magnesium doping on the sintering behavior, crystal structure, and microwave dielectric properties were studied. Mg doping in Ba2CuGe2O7 caused negligible changes in the macroscopic crystal structure, grain morphology, and size distribution, while induced visible variation in the local structure as revealed by Raman analysis. Microwave dielectric properties exhibit a remarkable dependence on composition. On increasing the magnesium content, the relative permittivity featured a continuous decrease, while both the quality factor and the temperature coefficient of resonance frequency increased monotonously. Such variations in dielectric performances were clarified in terms of the polarizability, packing fraction, and band valence theory.
This work was supported by National Natural Science Foundation of China (No. 62061011), National Key R&D Program of China (No. 2017YFB0406300), Natural Science Foundation of Guangxi Zhuang Autonomous Region (No. 2018GXNSFAA281253), and high-level innovation team and outstanding scholar program of Guangxi institutes.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.