AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Switchable near-infrared photoluminescence of PbS quantum dots through light and heat modulated hole transfer to spiropyran molecules

Zongwei Chen1,3( )Zhengxiao Li1Fan Li1Jingzhu Huo1Xinyi Meng1Shihao Ma1Wenbo Zhu1Fengqi Guo1Jia-Hua Hu2( )Kaifeng Wu3,4( )
Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

We present light and heat triggered modulation of the near-infrared (NIR) photoluminescence (PL) of PbS quantum dots (QDs) using adjacent spiropyran derivatives. Not only does this study for the first time extend the reach of QD-molecule switchable PL systems to the multi-stimuli, NIR region, but the fundamental insights revealed here by transient studies also offer a general guideline for the design of charge-transfer-based photoswitches.

Abstract

Precise modulation of photoluminescence (PL) of nanomaterials by external control is of great interest in such diverse areas as photocatalysis, memory and sensing. Recent studies have combined colloidal quantum dots (QDs) with photochromic molecules to construct optically switchable PL systems. However, it still remains challenging to switch the PL on and off in the near-infrared (NIR) region with multi-stimuli such as light and heat. Here, we present light and heat triggered modulation of the NIR PL of PbS QDs using adjacent spiropyran derivatives. The NIR PL of PbS was reversibly switched on and off through the isomerization process of spiropyran molecules that can be triggered by either light irradiation or heating. The PL intensity of the off state is low enough to yield an on/off ratio as high as 54. Transient absorption measurements revealed ultrafast photoinduced hole transfer from PbS to spiropyran, the rate and efficiency of which depend critically on the driving force that can be deeply modulated through spiropyran isomerization. This study not only establishes a novel multi-stimuli switchable PL system in the NIR, but also provides fundamental guidelines for the design for such systems for a variety of emerging applications.

Electronic Supplementary Material

Download File(s)
7109_ESM.pdf (2.7 MB)

References

[1]

Warren, S. C.; Guney-Altay, O.; Grzybowski, B. A. Responsive and nonequilibrium nanomaterials. J. Phys. Chem. Lett. 2012, 3, 2103–2111.

[2]

Fang, S.; Xia, Y.; Lv, K. L.; Li, Q.; Sun, J.; Li, M. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B: Environ. 2016, 185, 225–232.

[3]

Chen, P. C.; Ma, J. Y.; Chen, L. Y.; Lin, G. L.; Shih, C. C.; Lin, T. Y.; Chang, H. T. Photoluminescent AuCu bimetallic nanoclusters as pH sensors and catalysts. Nanoscale 2014, 6, 3503–3507.

[4]

Corredor, C. C.; Huang, Z. L.; Belfield, K. D.; Morales, A. R.; Bondar, M. V. Photochromic polymer composites for two-photon 3D optical data storage. Chem. Mater. 2007, 19, 5165–5173.

[5]

Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T. A digital fluorescent molecular photoswitch. Nature 2002, 420, 759–760.

[6]

Lent, C. S.; Tougaw, P. D. A device architecture for computing with quantum dots. Proc. IEEE 1997, 85, 541–557.

[7]

Huang, C. Y.; Li, H. C.; Wu, Y.; Lin, C. H.; Guan, X. W.; Hu, L.; Kim, J.; Zhu, X. M.; Zeng, H. B.; Wu, T. Inorganic halide perovskite quantum dots: A versatile nanomaterial platform for electronic applications. Nano-Micro Lett. 2023, 15, 16.

[8]

Padgaonkar, S.; Olding, J. N.; Lauhon, L. J.; Hersam, M. C.; Weiss, E. A. Emergent optoelectronic properties of mixed-dimensional heterojunctions. Acc. Chem. Res. 2020, 53, 763–772.

[9]

Li, J. G.; Wang, M. S.; Wu, Z. L.; Li, H. N.; Hu, G. W.; Jiang, T. Z.; Guo, J. H.; Liu, Y. R.; Yao, K.; Chen, Z. H. et al. Tunable chiral optics in all-solid-phase reconfigurable dielectric nanostructures. Nano Lett. 2021, 21, 973–979.

[10]

Long, G. K.; Sabatini, R.; Saidaminov, M. I.; Lakhwani, G.; Rasmita, A.; Liu, X. G.; Sargent, E. H.; Gao, W. B. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 2020, 5, 423–439.

[11]

Zhu, L. Y.; Zhu, M. Q.; Hurst, J. K.; Li, A. D. Q. Light-controlled molecular switches modulate nanocrystal fluorescence. J. Am. Chem. Soc. 2005, 127, 8968–8970.

[12]

Díaz, S. A.; Giordano, L.; Jovin, T. M.; Jares-Erijman, E. A. Modulation of a photoswitchable dual-color quantum dot containing a photochromic FRET acceptor and an internal standard. Nano Lett. 2012, 12, 3537–3544.

[13]

Díaz, S. A.; Gillanders, F.; Jares-Erijman, E. A.; Jovin, T. M. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors. Nat. Commun. 2015, 6, 6036.

[14]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[15]

Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

[16]

Hines, M. A.; Scholes, G. D. Colloidal PbS Nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844–1849.

[17]

Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X. K.; Khan, J.; Tang, J.; Song, H. S. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 2017, 11, 9294–9302.

[18]

Hanifi, D. A.; Bronstein, N. D.; Koscher, B. A.; Nett, Z.; Swabeck, J. K.; Takano, K.; Schwartzberg, A. M.; Maserati, L.; Vandewal, K.; van de Burgt, Y. et al. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 2019, 363, 1199–1202.

[19]

Li, Y. L.; Ding, T.; Luo, X.; Tian, Y. Y.; Lu, X.; Wu, K. F. Synthesis and spectroscopy of monodispersed, quantum-Confined FAPbBr3 perovskite nanocrystals. Chem. Mater. 2020, 32, 549–556.

[20]

Yano, N.; Yamauchi, M.; Kitagawa, D.; Kobatake, S.; Masuo, S. Photoluminescence on/off switching of a single colloidal quantum dot using photochromic diarylethene. J. Phys. Chem. C 2020, 124, 17423–17429.

[21]

Schmidt, L. C.; Edelsztein, V. C.; Spagnuolo, C. C.; Di Chenna, P. H.; Galian, R. E. Light-responsive hybrid material based on luminescent core-shell quantum dots and steroidal organogel. J. Mater. Chem. C 2016, 4, 7035–7042.

[22]

Zhang, X.; Hou, L.; Samorì, P. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat. Commun. 2016, 7, 11118.

[23]

Padgaonkar, S.; Eckdahl, C. T.; Sowa, J. K.; López-Arteaga, R.; Westmoreland, D. E.; Woods, E. F.; Irgen-Gioro, S.; Nagasing, B.; Seideman, T.; Hersam, M. C. et al. Light-triggered switching of quantum dot photoluminescence through excited-state electron transfer to surface-bound photochromic molecules. Nano Lett. 2021, 21, 854–860.

[24]

Hou, L. L.; Ringström, R.; Maurer, A. B.; Abrahamsson, M.; Andréasson, J.; Albinsson, B. Optically switchable NIR photoluminescence of PbS semiconducting nanocrystals using diarylethene photoswitches. J. Am. Chem. Soc. 2022, 144, 17758–17762.

[25]

Mutai, T.; Satou, H.; Araki, K. Reproducible on-off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nat. Mater. 2005, 4, 685–687.

[26]

Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645.

[27]

Roubinet, B.; Weber, M.; Shojaei, H.; Bates, M.; Bossi, M. L.; Belov, V. N.; Irie, M.; Hell, S. W. Fluorescent photoswitchable diarylethenes for biolabeling and single-molecule localization microscopies with optical superresolution. J. Am. Chem. Soc. 2017, 139, 6611–6620.

[28]

Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 2010, 110, 2620–2640.

[29]

Díaz, S. A.; Menéndez, G. O.; Etchehon, M. H.; Giordano, L.; Jovin, T. M.; Jares-Erijman, E. A. Photoswitchable water-soluble quantum dots: pcFRET based on amphiphilic photochromic polymer coating. ACS Nano 2011, 5, 2795–2805.

[30]

Bernard, J. J.; Gallo, R. L.; Krutmann, J. Photoimmunology: How ultraviolet radiation affects the immune system. Nat. Rev. Immunol. 2019, 19, 688–701.

[31]

Bandara, H. M. D.; Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825.

[32]

Henzl, J.; Mehlhorn, M.; Gawronski, H.; Rieder, K. H.; Morgenstern, K. Reversible cis- trans isomerization of a single azobenzene molecule. Angew. Chem., Int. Ed. 2006, 45, 603–606.

[33]

Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148–184.

[34]

Minkin, V. I. Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem. Rev. 2004, 104, 2751–2776.

[35]

Irie, M. Diarylethenes for memories and switches. Chem. Rev. 2000, 100, 1685–1716.

[36]

Heinz, B.; Malkmus, S.; Laimgruber, S.; Dietrich, S.; Schulz, C.; Rück-Braun, K.; Braun, M.; Zinth, W.; Gilch, P. Comparing a photoinduced pericyclic ring opening and closure: Differences in the excited state pathways. J. Am. Chem. Soc. 2007, 129, 8577–8584.

[37]

Day, J. H. Thermochromism. Chem. Rev. 1963, 63, 65–80.

[38]

Kortekaas, L.; Browne, W. R. The evolution of spiropyran: Fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 2019, 48, 3406–3424.

[39]

Norsten, T. B.; Peters, A.; McDonald, R.; Wang, M. T.; Branda, N. R. Reversible [7]-thiahelicene formation using a 1,2-dithienylcyclopentene photochrome. J. Am. Chem. Soc. 2001, 123, 7447–7448.

[40]

Kim, M. S.; Maruyama, H.; Kawai, T.; Irie, M. Refractive index changes of amorphous diarylethenes containing 2,4-diphenylphenyl substituents. Chem. Mater. 2003, 15, 4539–4543.

[41]

Matsuda, K.; Irie, M. A diarylethene with two nitronyl nitroxides: Photoswitching of intramolecular magnetic interaction. J. Am. Chem. Soc. 2000, 122, 7195–7201.

[42]

Xia, Y.; Chen, W.; Zhang, P.; Liu, S. S.; Wang, K.; Yang, X. K.; Tang, H. D.; Lian, L. Y.; He, J. G.; Liu, X. X. et al. Facet control for trap-state suppression in colloidal quantum dot solids. Adv. Funct. Mater. 2020, 30, 2000594.

[43]

Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G. A. Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem. Soc. 2006, 128, 10337–10346.

[44]

Kozlenko, A. S.; Ozhogin, I. V.; Pugachev, A. D.; Lukyanova, M. B.; El-Sewify, I. M.; Lukyanov, B. S. A modern look at spiropyrans: From single molecules to smart materials. Top. Curr. Chem. 2023, 381, 8.

[45]

Tian, Z. Y.; Wu, W. W.; Wan, W.; Li, A. D. Q. Photoswitching-induced frequency-locked donor-acceptor fluorescence double modulations identify the target analyte in complex environments. J. Am. Chem. Soc. 2011, 133, 16092–16100.

[46]

Cui, C. C.; Liu, G. J.; Gao, H.; Wang, M.; Gao, J. Spiropyran-based photo- and thermal-responsive smart polymer with controllable wettability. Polymer 2022, 253, 124995.

[47]

Naughton, S. P.; Gaudet, R. M.; Leslie, A. A.; Keirstead, A. E. Direct observation of spiropyran phosphorescence in imidazolium ionic liquids. Chem. Phys. Lett. 2013, 556, 102–107.

[48]

Luo, X.; Han, Y. Y.; Chen, Z. W.; Li, Y. L.; Liang, G. J.; Liu, X.; Ding, T.; Nie, C. M.; Wang, M.; Castellano, F. N. et al. Mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface. Nat. Commun. 2020, 11, 28.

[49]

Julià‐López, A.; Hernando, J.; Ruiz-Molina, D.; González-Monje, P.; Sedó, J.; Roscini, C. Temperature-controlled switchable photochromism in solid materials. Angew. Chem., Int. Ed. 2016, 55, 15044–15048.

[50]

Piard, J. Influence of the solvent on the thermal back reaction of one spiropyran. J. Chem. Educ. 2014, 91, 2105–2111.

[51]

Zhao, G. H.; Chen, Z. W.; Xiong, K.; Liang, G. J.; Zhang, J. B.; Wu, K. F. Triplet energy migration pathways from PbS quantum dots to surface-anchored polyacenes controlled by charge transfer. Nanoscale 2021, 13, 1303–1310.

[52]

Yang, T.; Chen, Z. W.; Yue, X. Z.; Liu, Q. C.; Yi, S. S.; Zhu, Y. F. Interfacial charge transfer bridge prolongs carrier recombination lifetimes of CoFe metal-thiolate framework/hematite photoanode for water oxidation. Adv. Funct. Mater. 2024, 34, 2313767.

[53]

Bourson, J.; Valeur, B. Ion-responsive fluorescent compounds. 2. Cation-steered intramolecular charge transfer in a crowned merocyanine. J. Phys. Chem. 1989, 93, 3871–3876.

Nano Research
Pages 10483-10489
Cite this article:
Chen Z, Li Z, Li F, et al. Switchable near-infrared photoluminescence of PbS quantum dots through light and heat modulated hole transfer to spiropyran molecules. Nano Research, 2024, 17(12): 10483-10489. https://doi.org/10.1007/s12274-024-7109-0
Topics:

204

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 November 2024
Revised: 09 November 2024
Accepted: 12 November 2024
Published: 23 November 2024
© Tsinghua University Press 2024
Return