Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Blue emissive quantum dots are key materials in fabricating quantum-dot light-emitting diodes for display applications. Up to date, most of the previous blue emissive quantum dots are based on quantum dots with type-I core-shell structure. In this work, we report pure-blue emissive ZnSe/CdxZn1−xS/ZnS quantum dots with type-II core-shell structure, which show high photoluminescence quantum yield over 90%. The type-II structure was investigated by applying time-resolved photoluminescence and transient absorption measurements, illustrating the extended photoluminescence decay lifetime of ZnSe/CdxZn1−xS quantum dots as well as the transition of bleaching peak from the valence band of ZnSe to the conduction band of CdZnS. We further fabricated ZnSe/CdxZn1−xS/ZnS quantum dots based electroluminescence devices, achieving a maximum external quantum efficiency of 6.7% and a maximum luminance of 39,766 cd·m−2.
Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.
Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 59, 22312–22323.
Jang, E.; Jang, H. Review: Quantum dot light-emitting diodes. Chem. Rev. 2023, 123, 4663–4692.
Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.
Lee, T.; Kim, B. J.; Lee, H.; Hahm, D.; Bae, W. K.; Lim, J.; Kwak, J. Bright and stable quantum dot light-emitting diodes. Adv. Mater. 2022, 34, 2106276.
Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.
Xu, H. Y.; Song, J. J.; Zhou, P. H.; Song, Y.; Xu, J.; Shen, H. B.; Fang, S. C.; Gao, Y.; Zuo, Z. J. et al. Dipole-dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photonics 2024, 18, 186–191.
Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.
Fan, J. P.; Han, C. F.; Yang, G. J.; Song, B.; Xu, R.; Xiang, C. Y.; Zhang, T.; Qian, L. Recent progress of quantum dots light-emitting diodes: Materials, device structures, and display applications. Adv. Mater. 2024, 36, 2312948.
Kim, J.; Roh, J.; Park, M.; Lee, C. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv. Mater. 2024, 36, 2212220.
Qi, H.; Wang, S. J.; Jiang, X. H.; Fang, Y.; Wang, A. Q.; Shen, H. B.; Du, Z. L. Research progress and challenges of blue light-emitting diodes based on II-VI semiconductor quantum dots. J. Mater. Chem. C 2020, 8, 10160–10173.
Chen, F.; Lin, Q. L.; Shen, H. B.; Tang, A. W. Blue quantum dot-based electroluminescent light-emitting diodes. Mater. Chem. Front. 2020, 4, 1340–1365.
Kim, Y. H.; Yoon, S. Y.; Yang, H. Blue-emissive ZnSeTe quantum dots and their electroluminescent devices. J. Phys. Chem. Lett. 2024, 15, 2142–2151.
Gao, M.; Yang, H. W.; Shen, H. B.; Zeng, Z. P.; Fan, F. J.; Tang, B. B.; Min, J. J.; Zhang, Y.; Hua, Q. Z.; Li, L. S. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 2021, 21, 7252–7260.
Long, Z. W.; Liu, M. R.; Wu, X. G.; Gu, K.; Yang, G. L.; Chen, Z.; Liu, Y.; Liu, R. H.; Zhong, H. Z. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat. Synth. 2023, 2, 296–304.
He, J. H.; Wang, C. H.; Liu, M. R.; Ramzan, M.; Long, Z. W.; Wu, X. G.; Chen, Y.; Zhong, H. Z. Overcoming side reaction effects in the colloidal synthesis of ZnSe/ZnS core/shell quantum dots with an etching strategy. Nano Res. 2024, 17, 7020–7026.
Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. 3.0.CO;2-G">Angew. Chem., Int. Ed. 2002, 41, 2368–2371.
Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.
Steckel, J. S.; Zimmer, J. P.; Coe-Sullivan, S.; Stott, N. E.; Bulović, V.; Bawendi, M. G. Blue luminescence from (CdS)ZnS core-shell nanocrystals. Angew. Chem.,Int. Ed. 2004, 116, 2206–2210.
Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.
Čapek, R. K.; Lambert, K.; Dorfs, D.; Smet, P. F.; Poelman, D.; Eychmüller, A.; Hens, Z. Synthesis of extremely small CdSe and bright blue luminescent CdSe/ZnS nanoparticles by a prefocused hot-injection approach. Chem. Mater. 2009, 21, 1743–1749.
Shen, H. B.; Wang, H. Z.; Tang, Z. J.; Niu, J. Z.; Lou, S. Y.; Du, Z. L.; Li, L. S. High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method. CrystEngComm 2009, 11, 1733–1738.
Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129, 15432–15433.
Xu, S.; Ziegler, J.; Nann, T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 2008, 18, 2653–2656.
Yang, X. Y.; Zhao, D. W.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J. L.; Demir, H. V.; Sun, X. W. Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv. Mater. 2012, 24, 4180–4185.
Zhong, X. H.; Han, M. Y.; Dong, Z. L.; White, T. J.; Knoll, W. Composition-tunable Zn x Cd1− x Se nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 2003, 125, 8589–8594.
Zhong, X. H.; Zhang, Z. H.; Liu, S. H.; Han, M. Y.; Knoll, W. Embryonic nuclei-induced alloying process for the reproducible synthesis of blue-emitting Zn x Cd1− x Se nanocrystals with long-time thermal stability in size distribution and emission wavelength. J. Phys. Chem. B 2004, 108, 15552–15559.
Chen, X. T.; Lin, X. F.; Zhou, L. K.; Sun, X. J.; Li, R.; Chen, M. Y.; Yang, Y. X.; Hou, W. J.; Wu, L. J.; Cao, W. R. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat.Commun. 2023, 14, 284.
Zhong, X. H.; Feng, Y. Y.; Knoll, W.; Han, M. Y. Alloyed Zn x Cd1− x S nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 2003, 125, 13559–13563.
Bae, W. K.; Nam, M. K.; Char, K.; Lee, S. Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1− x Zn x S/ZnS nanocrystals. Chem. Mater. 2008, 20, 5307–5313.
Lee, K. H.; Lee, J. H.; Song, W. S.; Ko, H.; Lee, C.; Lee, J. H.; Yang, H. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS Nano 2013, 7, 7295–7302.
Aubert, T.; Cirillo, M.; Flamee, S.; Van Deun, R.; Lange, H.; Thomsen, C.; Hens, Z. Homogeneously alloyed CdSe1− x S x quantum dots (0 ≤ x ≤ 1): An efficient synthesis for full optical tunability. Chem. Mater. 2013, 25, 2388–2390.
Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.
Gao, Y.; Li, B.; Liu, X. N.; Shen, H. B.; Song, Y.; Song, J. J.; Yan, Z. J.; Yan, X. H.; Chong, Y. H.; Yao, R.Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat.Nanotechnol. 2023, 18, 1168–1174.
Jang, E. P.; Han, C. Y.; Lim, S. W.; Jo, J. H.; Jo, D. Y.; Lee, S. H.; Yoon, S. Y.; Yang, H. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 2019, 11, 46062–46069.
Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.
Cheng, C. Y.; Yu, B. B.; Huang, F.; Gao, L.; Cao, K. Q.; Zang, P. P.; Zheng, K. B.; Tian, J. J. Near-unity quantum yield ZnSeTe quantum dots enabled by controlling shell growth for efficient deep-blue light-emitting diodes. Adv. Funct. Mater. 2024, 34, 2313811.
Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.
Whitehead, C. B.; Özkar, S.; Finke, R. G. LaMer’s 1950 model for particle formation of instantaneous nucleation and diffusion-controlled growth: A historical look at the model’s origins, assumptions, equations, and underlying sulfur sol formation kinetics data. Chem. Mater. 2019, 31, 7116–7132.
Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 2003, 125, 11466–11467.
Nemchinov, A.; Kirsanova, M.; Hewa-Kasakarage, N. N.; Zamkov, M. Synthesis and characterization of type II ZnSe/CdS core/shell nanocrystals. J. Phys. Chem. C 2008, 112, 9301–9307.
Eren, G. O.; Sadeghi, S.; Bahmani Jalali, H.; Ritter, M.; Han, M.; Baylam, I.; Melikov, R.; Onal, A.; Oz, F.; Sahin, M. et al. Cadmium-free and efficient type-II InP/ZnO/ZnS quantum dots and their application for LEDs. ACS Appl. Mater. Interfaces 2021, 13, 32022–32030.
Rawalekar, S.; Kaniyankandy, S.; Verma, S.; Ghosh, H. N. Effect of surface states on charge-transfer dynamics in type II CdTe/ZnTe core-shell quantum dots: A femtosecond transient absorption study. J. Phys. Chem. C 2011, 115, 12335–12342.
Ca, N. X.; Lien, V. T. K.; Nghia, N. X.; Chi, T. T. K.; Phan, T. L. Type-II CdS/ZnSe core/shell heterostructures: UV–vis absorption, photoluminescence and Raman scattering studies. Mater. Sci. Eng. B 2015, 200, 107–116.
Wang, L.; Wang, H. Y.; Gao, B. R.; Pan, L. Y.; Jiang, Y.; Chen, Q. D.; Han, W.; Sun, H. B. Transient absorption spectroscopic study on band-structure-type change in CdTe/CdS core-shell quantum dots. IEEE J. Quantum Electron. 2011, 47, 1177–1184.
Zhu, H. M.; Song, N. H.; Lian, T. Q. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots. J. Am. Chem. Soc. 2011, 133, 8762–8771.
Jin, W. X.; Deng, Y. Z.; Guo, B. B.; Lian, Y. X.; Zhao, B. D.; Di, D. W.; Sun, X. W.; Wang, K.; Chen, S. M.; Yang, Y.X. et al. On the accurate characterization of quantum-dot light-emitting diodes for display applications. npj Flex. Electron. 2022, 6, 35.