AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pure-blue emissive ZnSe/CdxZn1−xS/ZnS quantum dots with type-II core-shell structure for display application

Mingrui Liu1Chenhui Wang2Peng Huang1Jinhua He1Muhammad Ramzan1Haizheng Zhong1( )
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Engineering Research Center for Mixed Reality and Advanced Display Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

Pure-blue emissive ZnSe/CdxZn1−xS/ZnS quantum dots with type-II core-shell structure show high photoluminescence quantum yield (PLQY) over 90% from 444 to 479 nm.

Abstract

Blue emissive quantum dots are key materials in fabricating quantum-dot light-emitting diodes for display applications. Up to date, most of the previous blue emissive quantum dots are based on quantum dots with type-I core-shell structure. In this work, we report pure-blue emissive ZnSe/CdxZn1−xS/ZnS quantum dots with type-II core-shell structure, which show high photoluminescence quantum yield over 90%. The type-II structure was investigated by applying time-resolved photoluminescence and transient absorption measurements, illustrating the extended photoluminescence decay lifetime of ZnSe/CdxZn1−xS quantum dots as well as the transition of bleaching peak from the valence band of ZnSe to the conduction band of CdZnS. We further fabricated ZnSe/CdxZn1−xS/ZnS quantum dots based electroluminescence devices, achieving a maximum external quantum efficiency of 6.7% and a maximum luminance of 39,766 cd·m−2.

Electronic Supplementary Material

Download File(s)
7106_ESM.pdf (1.1 MB)

References

[1]

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

[2]

Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 59, 22312–22323.

[3]

Jang, E.; Jang, H. Review: Quantum dot light-emitting diodes. Chem. Rev. 2023, 123, 4663–4692.

[4]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[5]

Lee, T.; Kim, B. J.; Lee, H.; Hahm, D.; Bae, W. K.; Lim, J.; Kwak, J. Bright and stable quantum dot light-emitting diodes. Adv. Mater. 2022, 34, 2106276.

[6]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[7]

Xu, H. Y.; Song, J. J.; Zhou, P. H.; Song, Y.; Xu, J.; Shen, H. B.; Fang, S. C.; Gao, Y.; Zuo, Z. J. et al. Dipole-dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photonics 2024, 18, 186–191.

[8]

Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

[9]

Fan, J. P.; Han, C. F.; Yang, G. J.; Song, B.; Xu, R.; Xiang, C. Y.; Zhang, T.; Qian, L. Recent progress of quantum dots light-emitting diodes: Materials, device structures, and display applications. Adv. Mater. 2024, 36, 2312948.

[10]

Kim, J.; Roh, J.; Park, M.; Lee, C. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv. Mater. 2024, 36, 2212220.

[11]

Qi, H.; Wang, S. J.; Jiang, X. H.; Fang, Y.; Wang, A. Q.; Shen, H. B.; Du, Z. L. Research progress and challenges of blue light-emitting diodes based on II-VI semiconductor quantum dots. J. Mater. Chem. C 2020, 8, 10160–10173.

[12]

Chen, F.; Lin, Q. L.; Shen, H. B.; Tang, A. W. Blue quantum dot-based electroluminescent light-emitting diodes. Mater. Chem. Front. 2020, 4, 1340–1365.

[13]

Kim, Y. H.; Yoon, S. Y.; Yang, H. Blue-emissive ZnSeTe quantum dots and their electroluminescent devices. J. Phys. Chem. Lett. 2024, 15, 2142–2151.

[14]

Gao, M.; Yang, H. W.; Shen, H. B.; Zeng, Z. P.; Fan, F. J.; Tang, B. B.; Min, J. J.; Zhang, Y.; Hua, Q. Z.; Li, L. S. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 2021, 21, 7252–7260.

[15]

Long, Z. W.; Liu, M. R.; Wu, X. G.; Gu, K.; Yang, G. L.; Chen, Z.; Liu, Y.; Liu, R. H.; Zhong, H. Z. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat. Synth. 2023, 2, 296–304.

[16]

He, J. H.; Wang, C. H.; Liu, M. R.; Ramzan, M.; Long, Z. W.; Wu, X. G.; Chen, Y.; Zhong, H. Z. Overcoming side reaction effects in the colloidal synthesis of ZnSe/ZnS core/shell quantum dots with an etching strategy. Nano Res. 2024, 17, 7020–7026.

[17]

Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. 3.0.CO;2-G">Angew. Chem., Int. Ed. 2002, 41, 2368–2371.

[18]

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

[19]

Steckel, J. S.; Zimmer, J. P.; Coe-Sullivan, S.; Stott, N. E.; Bulović, V.; Bawendi, M. G. Blue luminescence from (CdS)ZnS core-shell nanocrystals. Angew. Chem.,Int. Ed. 2004, 116, 2206–2210.

[20]

Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.

[21]

Čapek, R. K.; Lambert, K.; Dorfs, D.; Smet, P. F.; Poelman, D.; Eychmüller, A.; Hens, Z. Synthesis of extremely small CdSe and bright blue luminescent CdSe/ZnS nanoparticles by a prefocused hot-injection approach. Chem. Mater. 2009, 21, 1743–1749.

[22]

Shen, H. B.; Wang, H. Z.; Tang, Z. J.; Niu, J. Z.; Lou, S. Y.; Du, Z. L.; Li, L. S. High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method. CrystEngComm 2009, 11, 1733–1738.

[23]

Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129, 15432–15433.

[24]

Xu, S.; Ziegler, J.; Nann, T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 2008, 18, 2653–2656.

[25]

Yang, X. Y.; Zhao, D. W.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J. L.; Demir, H. V.; Sun, X. W. Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv. Mater. 2012, 24, 4180–4185.

[26]

Zhong, X. H.; Han, M. Y.; Dong, Z. L.; White, T. J.; Knoll, W. Composition-tunable Zn x Cd1− x Se nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 2003, 125, 8589–8594.

[27]

Zhong, X. H.; Zhang, Z. H.; Liu, S. H.; Han, M. Y.; Knoll, W. Embryonic nuclei-induced alloying process for the reproducible synthesis of blue-emitting Zn x Cd1− x Se nanocrystals with long-time thermal stability in size distribution and emission wavelength. J. Phys. Chem. B 2004, 108, 15552–15559.

[28]

Chen, X. T.; Lin, X. F.; Zhou, L. K.; Sun, X. J.; Li, R.; Chen, M. Y.; Yang, Y. X.; Hou, W. J.; Wu, L. J.; Cao, W. R. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat.Commun. 2023, 14, 284.

[29]

Zhong, X. H.; Feng, Y. Y.; Knoll, W.; Han, M. Y. Alloyed Zn x Cd1− x S nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 2003, 125, 13559–13563.

[30]

Bae, W. K.; Nam, M. K.; Char, K.; Lee, S. Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1− x Zn x S/ZnS nanocrystals. Chem. Mater. 2008, 20, 5307–5313.

[31]

Lee, K. H.; Lee, J. H.; Song, W. S.; Ko, H.; Lee, C.; Lee, J. H.; Yang, H. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS Nano 2013, 7, 7295–7302.

[32]

Aubert, T.; Cirillo, M.; Flamee, S.; Van Deun, R.; Lange, H.; Thomsen, C.; Hens, Z. Homogeneously alloyed CdSe1− x S x quantum dots (0 ≤ x ≤ 1): An efficient synthesis for full optical tunability. Chem. Mater. 2013, 25, 2388–2390.

[33]

Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.

[34]

Gao, Y.; Li, B.; Liu, X. N.; Shen, H. B.; Song, Y.; Song, J. J.; Yan, Z. J.; Yan, X. H.; Chong, Y. H.; Yao, R.Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat.Nanotechnol. 2023, 18, 1168–1174.

[35]

Jang, E. P.; Han, C. Y.; Lim, S. W.; Jo, J. H.; Jo, D. Y.; Lee, S. H.; Yoon, S. Y.; Yang, H. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 2019, 11, 46062–46069.

[36]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[37]

Cheng, C. Y.; Yu, B. B.; Huang, F.; Gao, L.; Cao, K. Q.; Zang, P. P.; Zheng, K. B.; Tian, J. J. Near-unity quantum yield ZnSeTe quantum dots enabled by controlling shell growth for efficient deep-blue light-emitting diodes. Adv. Funct. Mater. 2024, 34, 2313811.

[38]

Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

[39]

Whitehead, C. B.; Özkar, S.; Finke, R. G. LaMer’s 1950 model for particle formation of instantaneous nucleation and diffusion-controlled growth: A historical look at the model’s origins, assumptions, equations, and underlying sulfur sol formation kinetics data. Chem. Mater. 2019, 31, 7116–7132.

[40]

Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 2003, 125, 11466–11467.

[41]

Nemchinov, A.; Kirsanova, M.; Hewa-Kasakarage, N. N.; Zamkov, M. Synthesis and characterization of type II ZnSe/CdS core/shell nanocrystals. J. Phys. Chem. C 2008, 112, 9301–9307.

[42]

Eren, G. O.; Sadeghi, S.; Bahmani Jalali, H.; Ritter, M.; Han, M.; Baylam, I.; Melikov, R.; Onal, A.; Oz, F.; Sahin, M. et al. Cadmium-free and efficient type-II InP/ZnO/ZnS quantum dots and their application for LEDs. ACS Appl. Mater. Interfaces 2021, 13, 32022–32030.

[43]

Rawalekar, S.; Kaniyankandy, S.; Verma, S.; Ghosh, H. N. Effect of surface states on charge-transfer dynamics in type II CdTe/ZnTe core-shell quantum dots: A femtosecond transient absorption study. J. Phys. Chem. C 2011, 115, 12335–12342.

[44]

Ca, N. X.; Lien, V. T. K.; Nghia, N. X.; Chi, T. T. K.; Phan, T. L. Type-II CdS/ZnSe core/shell heterostructures: UV–vis absorption, photoluminescence and Raman scattering studies. Mater. Sci. Eng. B 2015, 200, 107–116.

[45]

Wang, L.; Wang, H. Y.; Gao, B. R.; Pan, L. Y.; Jiang, Y.; Chen, Q. D.; Han, W.; Sun, H. B. Transient absorption spectroscopic study on band-structure-type change in CdTe/CdS core-shell quantum dots. IEEE J. Quantum Electron. 2011, 47, 1177–1184.

[46]

Zhu, H. M.; Song, N. H.; Lian, T. Q. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots. J. Am. Chem. Soc. 2011, 133, 8762–8771.

[47]

Jin, W. X.; Deng, Y. Z.; Guo, B. B.; Lian, Y. X.; Zhao, B. D.; Di, D. W.; Sun, X. W.; Wang, K.; Chen, S. M.; Yang, Y.X. et al. On the accurate characterization of quantum-dot light-emitting diodes for display applications. npj Flex. Electron. 2022, 6, 35.

Nano Research
Pages 10476-10482
Cite this article:
Liu M, Wang C, Huang P, et al. Pure-blue emissive ZnSe/CdxZn1−xS/ZnS quantum dots with type-II core-shell structure for display application. Nano Research, 2024, 17(12): 10476-10482. https://doi.org/10.1007/s12274-024-7106-3
Topics:

1116

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 September 2024
Revised: 01 November 2024
Accepted: 01 November 2024
Published: 16 November 2024
© Tsinghua University Press 2024
Return