Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In colloidal quantum dots (QDs), the geometries of surface ligands may play significant roles in tuning the electronic structure, optical spectra and exciton dynamics. We here propose an effective approach to build a diverse dataset of small QDs, based on which the machine learning force field (MLFF) can be obtained based on the DeePMD framework and the energy of each atom is expressed based on the local atomic structure. Using the obtained QD force field (QDFF), molecular dynamics simulation of large zinc-blende CdSe QDs passivated by carboxylate ligands is successfully carried out, and the complex surface structure is extensively studied. We find that bridging, tilted, chelating and claw geometries are the major geometries of carboxylate ligands in CdSe QDs, and the alkyl chain length of ligands plays a significant role. The Markov state model is utilized to reveal the detailed geometry transformation channels. Due to the high performance of QDFF, the present approach is promising for systematic studies of large QDs with different kinds of ligands that can be synthesized in experiment.
Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571.
Chestnoy, N.; Hull, R.; Brus, L. E. Higher excited electronic states in clusters of ZnSe, CdSe, and ZnS: Spin-orbit, vibronic, and relaxation phenomena. J. Chem. Phys. 1986, 85, 2237–2242.
Albe, V.; Jouanin, C.; Bertho, D. Confinement and shape effects on the optical spectra of small CdSe nanocrystals. Phys. Rev. B 1998, 58, 4713–4720.
Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.
Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.
Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.
Tian, L. J.; Min, Y.; Li, W. W.; Chen, J. J.; Zhou, N. Q.; Zhu, T. T.; Li, D. B.; Ma, J. Y.; An, P. F.; Zheng, L. R. et al. Substrate metabolism-driven assembly of high-quality CdS x Se1– x quantum dots in Escherichia coli: Molecular mechanisms and bioimaging application. ACS Nano 2019, 13, 5841–5851.
Lan, X. Z.; Voznyy, O.; Kiani, A.; García de Arquer, F. P.; Abbas, A. S.; Kim, G. H.; Liu, M. X.; Yang, Z. Y.; Walters, G.; Xu, J. X. et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 2016, 28, 299–304.
Busby, E.; Anderson, N. C.; Owen, J. S.; Sfeir, M. Y. Effect of surface stoichiometry on blinking and hole trapping dynamics in CdSe nanocrystals. J. Phys. Chem. C 2015, 119, 27797–27803.
Houtepen, A. J.; Hens, Z.; Owen, J. S.; Infante, I. On the origin of surface traps in colloidal II-VI semiconductor nanocrystals. Chem. Mater. 2017, 29, 752–761.
Voznyy, O. Mobile surface traps in CdSe nanocrystals with carboxylic acid ligands. J. Phys. Chem. C 2011, 115, 15927–15932.
Swenson, N. K.; Ratner, M. A.; Weiss, E. A. Computational study of the influence of the binding geometries of organic ligands on the photoluminescence quantum yield of CdSe clusters. J. Phys. Chem. C 2016, 120, 6859–6868.
Lei, H. R.; Li, J. Z.; Kong, X. Q.; Wang, L. J.; Peng, X. G. Toward surface chemistry of semiconductor nanocrystals at an atomic-molecular level. Acc. Chem. Res. 2023, 56, 1966–1977.
Rabani, E. Structure and electrostatic properties of passivated CdSe nanocrystals. J. Chem. Phys. 2001, 115, 1493–1497.
Margraf, J. T.; Ruland, A.; Sgobba, V.; Guldi, D. M.; Clark, T. Theoretical and experimental insights into the surface chemistry of semiconductor quantum dots. Langmuir 2013, 29, 15450–15456.
Azpiroz, J. M.; De Angelis, F. Ligand induced spectral changes in CdSe quantum dots. ACS Appl. Mater. Interfaces 2015, 7, 19736–19745.
Wang, L. J.; Trivedi, D.; Prezhdo, O. V. Global flux surface hopping approach for mixed quantum-classical dynamics. J. Chem. Theory Comput. 2014, 10, 3598–3605.
Lei, H. W.; Chen, L. P.; Wang, L. J. Structural evolution of cadmium selenide clusters: An unbiased global optimization study of (CdSe) N for 5 ≤ N ≤ 80. J. Phys. Chem. Lett. 2023, 14, 5818–5826.
Jablonka, K. M.; Ongari, D.; Moosavi, S. M.; Smit, B. Big-data science in porous materials: Materials genomics and machine learning. Chem. Rev. 2020, 120, 8066–8129.
Orupattur, N. V.; Mushrif, S. H.; Prasad, V. Catalytic materials and chemistry development using a synergistic combination of machine learning and ab initio methods. Comput. Mater. Sci. 2020, 174, 109474.
Strieth-Kalthoff, F.; Sandfort, F.; Segler, M. H. S.; Glorius, F. Machine learning the ropes: Principles, applications and directions in synthetic chemistry. Chem. Soc. Rev. 2020, 49, 6154–6168.
Unke, O. T.; Chmiela, S.; Sauceda, H. E.; Gastegger, M.; Poltavsky, I.; Schütt, K. T.; Tkatchenko, A.; Müller, K. R. Machine learning force fields. Chem. Rev. 2021, 121, 10142–10186.
Rasmussen, C. E.; Williams, C. K. I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, 2006.
Guan, Y. F.; Yang, S.; Zhang, D. H. Construction of reactive potential energy surfaces with Gaussian process regression: Active data selection. Mol. Phys. 2018, 116, 823–834.
Bernstein, N.; Bhattarai, B.; Csányi, G.; Drabold, D. A.; Elliott, S. R.; Deringer, V. L. Quantifying chemical structure and machine-learned atomic energies in amorphous and liquid silicon. Angew. Chem., Int. Ed. 2019, 58, 7057–7061.
Abbott, A. S.; Turney, J. M.; Zhang, B. Y.; Smith, D. G. A.; Altarawy, D.; Schaefer III, H. F. PES-Learn: An open-source software package for the automated generation of machine learning models of molecular potential energy surfaces. J. Chem. Theory Comput. 2019, 15, 4386–4398.
Behler, J.; Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 2007, 98, 146401.
Merkwirth, C.; Lengauer, T. Automatic generation of complementary descriptors with molecular graph networks. J. Chem. Inf. Model. 2005, 45, 1159–1168.
Schütt, K. T.; Sauceda, H. E.; Kindermans, P. J.; Tkatchenko, A.; Müller, K. R. SchNet-A deep learning architecture for molecules and materials. J. Chem. Phys. 2018, 148, 241722.
Zhang, Y. L.; Xia, J. F.; Jiang, B. Physically motivated recursively embedded atom neural networks: Incorporating local completeness and nonlocality. Phys. Rev. Lett. 2021, 127, 156002.
Wen, T. Q.; Zhang, L. F.; Wang, H.; E, W. N.; Srolovitz, D. J. Deep potentials for materials science. Mater. Futures 2022, 1, 022601.
Devergne, T.; Magrino, T.; Pietrucci, F.; Saitta, A. M. Combining machine learning approaches and accurate ab initio enhanced sampling methods for prebiotic chemical reactions in solution. J. Chem. Theory Comput. 2022, 18, 5410–5421.
Yao, S. Y.; Van, R.; Pan, X. L.; Park, J. H.; Mao, Y. Z.; Pu, J. Z.; Mei, Y.; Shao, Y. H. Machine learning based implicit solvent model for aqueous-solution alanine dipeptide molecular dynamics simulations. RSC Adv. 2023, 13, 4565–4577.
Zhang, P.; Qin, M.; Zhang, Z. H.; Jin, D.; Liu, Y.; Wang, Z. Y.; Lu, Z. H.; Shi, J.; Xiong, R. Accessing the thermal conductivities of Sb2Te3 and Bi2Te3/Sb2Te3 superlattices by molecular dynamics simulations with a deep neural network potential. Phys. Chem. Chem. Phys. 2023, 25, 6164–6174.
Sowa, J. K.; Roberts, S. T.; Rossky, P. J. Exploring configurations of nanocrystal ligands using machine-learned force fields. J. Phys. Chem. Lett. 2023, 14, 7215–7222.
Schlegel, H. B.; Iyengar, S. S.; Li, X. S.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. III. Comparison with Born-Oppenheimer dynamics. J. Chem. Phys. 2002, 117, 8694–8704.
Zhang, Y. Z.; Wang, H. D.; Chen, W. J.; Zeng, J. Z.; Zhang, L. F.; Wang, H.; E, W. N. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput. Phys. Commun. 2020, 253, 107206.
Zheng, X. Y.; Zhu, L. Z.; Zeng, X. Z.; Meng, L. M.; Zhang, L.; Wang, D.; Huang, X. H. Kinetics-controlled amphiphile self-assembly processes. J. Phys. Chem. Lett. 2017, 8, 1798–1803.
Zeng, X. Z.; Li, Z. W.; Zheng, X. Y.; Zhu, L. Z.; Sun, Z. Y.; Lu, Z. Y.; Huang, X. H. Improving the productivity of monodisperse polyhedral cages by the rational design of kinetic self-assembly pathways. Phys. Chem. Chem. Phys. 2018, 20, 10030–10037.
Zheng, X. Y.; Chan, M. H. Y.; Chan, A. K. W.; Cao, S. Q.; Ng, M.; Sheong, F. K.; Li, C.; Goonetilleke, E. C.; Lam, W. W. Y.; Lau, T. C. et al. Elucidation of the key role of Pt···Pt interactions in the directional self-assembly of platinum(II) complexes. Proc. Natl. Acad. Sci. USA 2022, 119, e2116543119.
Wang, Y. J.; Li, C.; Zheng, X. Y. Markov state models reveal how folding kinetics influence absorption spectra of foldamers. J. Chem. Theory Comput. 2024, 20, 5396–5407.
Huang, X. H.; Bowman, G. R.; Bacallado, S.; Pande, V. S. Rapid equilibrium sampling initiated from nonequilibrium data. Proc. Natl. Acad. Sci. USA 2009, 106, 19765–19769.
Car, R.; Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 1985, 55, 2471–2474.
Lu, D. H.; Jiang, W. R.; Chen, Y. X.; Zhang, L. F.; Jia, W. L.; Wang, H.; Chen, M. H. DP compress: A model compression scheme for generating efficient deep potential models. J. Chem. Theory Comput. 2022, 18, 5559–5567.
Wang, X. N.; Wang, H. D.; Luo, Q. Q.; Yang, J. L. Structural and electrocatalytic properties of copper clusters: A study via deep learning and first principles. J. Chem. Phys. 2022, 157, 074304.
Raman, A. S.; Selloni, A. Modeling the solvation and acidity of carboxylic acids using an ab initio deep neural network potential. J. Phys. Chem. A 2022, 126, 7283–7290.
Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C. et al. The atomic simulation environment-A Python library for working with atoms. J. Phys.: Condens. Matter 2017, 29, 273002.
Zhang, J.; Zhang, H. B.; Cao, W. C.; Pang, Z. F.; Li, J. Z.; Shu, Y. F.; Zhu, C. Q.; Kong, X. Q.; Wang, L. J.; Peng, X. G. Identification of facet-dependent coordination structures of carboxylate ligands on CdSe nanocrystals. J. Am. Chem. Soc. 2019, 141, 15675–15683.
Lei, H. R.; Li, T. H.; Li, J. Z.; Zhu, J.; Zhang, H. B.; Qin, H. Y.; Kong, X. Q.; Wang, L. J.; Peng, X. G. Reversible facet reconstruction of CdSe/CdS core/shell nanocrystals by facet-ligand pairing. J. Am. Chem. Soc. 2023, 145, 6798–6810.