AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of flower-like MoS2 decorated on Cu doped CoZn-ZIF derived N-doped carbon as superior microwave absorber

Yun Han1,§Di Lan2,§Mengjun Han1,§Zihao Xia1Jiaxiao Zou1Zirui Jia1( )
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China

§ Yun Han, Di Lan, and Mengjun Han contributed equally to this work.

Show Author Information

Graphical Abstract

Cu/Co-NC/MoS2 composites with unique flower-like morphology was prepared to optimize the electromagnetic synergy strategy between components and to modulate the complex dielectric parameters of the materials, thus exhibiting outstanding microwave absorption properties.

Abstract

The rational design of composition nanostructures and morphologies of the carbon-based composites materials has a significant potential for tuning electromagnetic parameters and thereby improving their performance as electromagnetic wave (EMW) absorbers. In this work, the flower-like Cu/Co-NC/MoS2 (NC = N-doped carbon skeleton) composites were successfully prepared by employing CuCoZn-ZIF (ZIF = zeolitic imidazolate framework) as precursor with subsequent annealing and hydrothermal technique. The unique flower-like morphology and electromagnetic synergy strategy between components enable the as-obtained Cu/Co-NC/MoS2 composites to exhibit outstanding microwave absorption properties. Accordingly, the minimum reflection loss of Cu/Co-NC/MoS2 reaches −54.36 dB at 2.7 mm. When the thickness reduces to 2.2 mm, the maximum effective absorption bandwidth can be achieved as large as 6.72 GHz. This research develops useful ideas for optimizing multicomponent microwave absorbing materials.

Electronic Supplementary Material

Download File(s)
6859_ESM.pdf (899.2 KB)

References

[1]

Pan, Y. L.; Zhu, Q. Q.; Zhu, J. H.; Cheng, Y. H.; Yu, B. W.; Jia, Z. R.; Wu, G. L. Macroscopic electromagnetic synergy network enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. 2023, 16, 10666–10677.

[2]

Zhang, S.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Res. 2023, 16, 3395–3407.

[3]
Ren, Z. L.; Shi, Z. C.; Tang, Q. Y.; Xia, S. M.; Sun, L.; Fan, R. H.; Cui, H. Zhi.; Wang, H. Core-shell TiO2@Au nanofibers derived from a unique physical coating strategy for excellent capacitive energy storage nanocomposites. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202401907.
[4]

He, Y. F.; Su, Q.; Liu, D. D.; Xia, L.; Huang, X. X.; Lan, D.; Liu, Y. N.; Huang, Y. D.; Zhong, B. Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem. Eng. J. 2024, 491, 152041.

[5]

Hou, T. Q.; Wang, J. W.; Zheng, T. T.; Liu, Y.; Wu, G. L.; Yin, P. F. Anion exchange of metal particles on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption. Small 2023, 19, 2303463.

[6]

Zhang, S. J.; Gao, Z. G.; Sun, Z. B.; Cheng, B.; Zhao, Z. W.; Jia, Y. C.; Wu, G. L. Solid solution strategy for bimetallic metal-polyphenolic networks deriving electromagnetic wave absorbers with regulated heterointerfaces. Appl. Surf. Sci. 2023, 611, 155707.

[7]

Ma, T. B.; Zhang, Y. L.; Ruan, K. P.; Guo, H.; He, M. K.; Shi, X. T.; Guo, Y. Q.; Kong, J.; Gu, J. W. Advances in 3D printing for polymer composites: A review. InfoMat 2024, 6, e12568.

[8]
Su, X. G.; Wang, J.; Liu, T.; Zhang, Y.; Liu, Y. N.; Zhang, B.; Liu, Y. Q.; Wu, H. J.; Xu, H. X. Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202403397.
[9]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[10]

Lv, H. L.; Yang, Z. H.; Liu, B.; Wu, G. L.; Lou, Z. C.; Fei, B.; Wu, R. B. A flexible electromagnetic wave-electricity harvester. Nat. Commun. 2021, 12, 834.

[11]

Wu, G. L.; Zhang, H. X.; Luo, X. X.; Yang, L. J.; Lv, H. L. Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interface Sci. 2019, 536, 548–555.

[12]

Lan, D.; Qin, M.; Liu, J. L.; Wu, G. L.; Zhang, Y.; Wu, H. J. Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem. Eng. J. 2020, 382, 122797.

[13]

Su, X. G.; Zhang, Y.; Wang, J.; Liu, Y. Q. Enhanced electromagnetic wave absorption and mechanical performances of graphite nanosheet/PVDF foams via ice dissolution and normal pressure drying. J. Mater. Chem. C 2024, 12, 7775–7783.

[14]

Tan, D. L.; Wang, Q.; Li, M. R.; Song, L. M.; Zhang, F.; Min, Z. Y.; Wang, H. L.; Zhu, Y. Q.; Zhang, R.; Lan, D. et al. Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2024, 492, 152245.

[15]

Song, Y. H.; Liu, X. H.; Gao, Z. G.; Wang, Z. D.; Hu, Y. H.; Yang, K.; Zhao, Z. H.; Lan, D.; Wu, G. L. Core–shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 620, 263–272.

[16]

Zhang, S. J.; Pei, Y. X.; Zhao, Z. W.; Guan, C. L.; Wu, G. L. Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption. J. Colloid Interface Sci. 2023, 630, 453–464.

[17]

Zheng, T. T.; Zhang, Y.; Jia, Z. R.; Zhu, J. H.; Wu, G. L.; Yin, P. F. Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in Cu x S/CoFe2O4 composites. Chem. Eng. J. 2023, 457, 140876.

[18]

Gao, Z. G.; Song, Y. H.; Zhang, S. J.; Lan, D.; Zhao, Z. H.; Wang, Z. J.; Zang, D. Y.; Wu, G. L.; Wu, H. J. Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal-organic frameworks. J. Colloid Interface Sci. 2021, 600, 288–298.

[19]

Wu, N. N.; Zhao, B. B.; Lian, Y. Y.; Liu, S. S.; Xian, Y.; Gu, J. W.; Wu, G. L. Metal organic frameworks derived Ni x Se y @NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 2024, 226, 119215.

[20]

Deng, W. B.; Li, T. H.; Li, H.; Abdul, J.; Liu, L. T.; Dang, A. L.; Liu, X.; Duan, M. F.; Wu, H. J. MOF derivatives with gradient structure anchored on carbon foam for high-performance electromagnetic wave absorption. Small 2024, 20, 2309806.

[21]

Xu, Y. X.; Huang, Y. F.; Zhao, J.; Han, X. H.; Chai, C. P.; Ma, H. L. Facile synthesis of Co/La-MOF/Ti3C2T x nanocomposite for electromagnetic wave absorption. J. Alloys Compd. 2023, 960, 170829.

[22]

Yu, H.; Kou, X.; Zuo, X. Q.; Xi, D.; Guan, H. J.; Yin, P. F.; Xu, L. J.; Zhao, Y. P. Optimization of multiple attenuation mechanisms by cation substitution in imidazolic MOFs-derived porous composites for superior broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 20, 176–187.

[23]

Jiang, R.; Wang, Y. Q.; Wang, J. Y.; He, Q. C.; Wu, G. L. Controlled formation of multiple core–shell structures in metal-organic frame materials for efficient microwave absorption. J. Colloid Interface Sci. 2023, 648, 25–36.

[24]

Qiu, Y.; Yang, H. B.; Ma, L.; Lin, Y.; Zong, H. W.; Wen, B.; Bai, X. Y.; Wang, M. Q. In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption. J. Colloid Interface Sci. 2021, 581, 783–793.

[25]

Yin, Z. X.; Guo, J. Y.; Fang, W. Y.; Wang, Q.; Tian, G.; Zhang, D.; Yue, H. J.; Feng, S. H. Binary metal ions modulating MOF-derived sponge-structured nanocomposites for controlled electromagnetic wave absorption from S-band to Ku-band. Appl. Surf. Sci. 2023, 617, 156590.

[26]

Liu, B. S.; Wei, J. L.; Zhang, S. H.; Zhang, Y. Z.; Wu, P. P.; Fang, D. Q.; Ma, G. R. Microstructures, corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni) alloys for plugging tool applications. Int. J. Mater., Metall. Mater. 2024, 31, 697–711.

[27]

Chen, S.; Meng, Y. B.; Wang, X. L.; Liu, D.; Meng, X. X.; Wang, X. B.; Wu, G. L. Hollow tubular MnO2/MXene (Ti3C2, Nb2C, and V2C) composites as high-efficiency absorbers with synergistic anticorrosion performance. Carbon 2024, 218, 118698.

[28]

Zhang, H. X.; Sun, K. G.; Sun, K. K.; Chen, L.; Wu, G. L. Core-shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 242–252.

[29]

Zhang, S. J.; Cheng, B.; Gao, Z. G.; Lan, D.; Zhao, Z. W.; Wei, F. C.; Zhu, Q. S.; Lu, X. P.; Wu, G. L. Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects. J. Alloys Compd. 2022, 893, 162343.

[30]

Chen, X. L.; Wang, Y.; Liu, H. L.; Jin, S.; Wu, G. L. Interconnected magnetic carbon@Ni x Co1− x Fe2O4 nanospheres with core-shell structure: An efficient and thin electromagnetic wave absorber. J. Colloid Interface Sci. 2022, 606, 526–536.

[31]

Chen, Z. H.; Tian, K. H.; Zhang, C.; Shu, R. W.; Zhu, J. B.; Liu, Y.; Huang, Y. N.; Liu, X. W. In-situ hydrothermal synthesis of NiCo alloy particles@hydrophilic carbon cloth to construct corncob-like heterostructure for high-performance electromagnetic wave absorbers. J. Colloid Interface Sci. 2022, 616, 823–833.

[32]

Liu, J. L.; Zhang, L. M.; Wu, H. J.; Zang, D. Y. Boosted electromagnetic wave absorption performance from vacancies, defects and interfaces engineering in Co(OH)F/Zn0.76Co0.24S/Co3S4 composite. Chem. Eng. J. 2021, 411, 128601.

[33]

Wang, G.; Li, C. F.; Estevez, D.; Xu, P.; Peng, M. Y.; Wei, H. J.; Qin, F. X. Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 2023, 15, 152.

[34]

Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; He, W. J.; Huang, W. H.; Luo, J. H. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653.

[35]

Huang, Y. J.; Luo, J.; Pu, M. B.; Guo, Y. H.; Zhao, Z. Y.; Ma, X. L.; Li, X.; Luo, X. G. Catenary optics: Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv. Sci. 2019, 6, 1970038.

[36]

Zhang, Z.; Tan, J. W.; Gu, W. H.; Zhao, H. Q.; Zheng, J.; Zhang, B. S.; Ji, G. B. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190.

[37]

Zhang, X.; Tian, X. L.; Qin, Y. T.; Qiao, J.; Pan, F.; Wu, N.; Wang, C. X.; Zhao, S. Y.; Liu, W.; Cui, J. et al. Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 2023, 17, 12510–12518.

[38]

Rao, L. J.; Wang, L.; Yang, C. D.; Zhang, R. X.; Zhang, J. C.; Liang, C. Y.; Che, R. C. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2213258.

[39]

Cui, C.; Geng, L.; Jiang, S.; Bai, W. H.; Dai, L. L.; Jiang, S. X.; Hu, J.; Ren, E. H.; Guo, R. H. Construction of hierarchical carbon fiber aerogel@hollow Co9S8 polyhedron for high-performance electromagnetic wave absorption at low-frequency. Chem. Eng. J. 2023, 466, 143122.

[40]

Han, Y.; Han, M. J.; Zhao, T. B.; Xia, Z. H.; Zou, J. X.; Liu, X. H.; Jia, Z. R. Design of morphology-controlled cobalt-based spinel oxides for efficient X-band microwave absorption. Mater. Res. Bull. 2024, 172, 112670.

[41]

Chai, L.; Wang, Y. Q.; Zhou, N. F.; Du, Y.; Zeng, X. D.; Zhou, S. Y.; He, Q. C.; Wu, G. L. In-situ growth of core–shell ZnFe2O4@ porous hollow carbon microspheres as an efficient microwave absorber. J. Colloid Interface Sci. 2021, 581, 475–484.

[42]

Li, X. D.; Zhu, X.; Feng, A. L.; An, M. M.; Liu, P. T.; Zu, Y. Q. Electrochemical and surface analysis investigation of corrosion inhibition performance: 6-Thioguanine, benzotriazole, and phosphate salt on simulated patinas of bronze relics. J. Mater. Res. Technol. 2024, 29, 5667–5680.

[43]

Ma, M. L.; Li, W. T.; Tong, Z. Y.; Ma, Y.; Bi, Y. X.; Liao, Z. J.; Zhou, J.; Wu, G. L.; Li, M. X.; Yue, J. W. et al. NiCo2O4 nanosheets decorated on one-dimensional ZnFe2O4@SiO2@C nanochains with high-performance microwave absorption. J. Colloid Interface Sci. 2020, 578, 58–68.

[44]

Liu, J. L.; Liang, H. S.; Zhang, Y.; Wu, G. L.; Wu, H. J. Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. Part B: Eng. 2019, 176, 107240.

[45]

Yang, Y. F.; Han, M. R.; Liu, W.; Wu, N.; Liu, J. R. Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res. 2022, 15, 9614–9630.

[46]

Chen, X. L.; Wang, W.; Shi, T.; Wu, G. L.; Lu, Y. One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles. Carbon 2020, 163, 202–212.

[47]

Chen, X. L.; Shi, T.; Wu, G. L.; Lu, Y. Design of molybdenum disulfide@polypyrrole compsite decorated with Fe3O4 and superior electromagnetic wave absorption performance. J. Colloid Interface Sci. 2020, 572, 227–235.

[48]

Fan, X. M.; Yuan, R. Z.; Li, X.; Xu, H. L.; Kong, L.; Wu, G. L.; Zhang, L. T.; Cheng, L. F. RGO-supported core–shell SiO2@SiO2/carbon microsphere with adjustable microwave absorption properties. Ceram. Int. 2020, 46, 14985–14993.

[49]

Wang, Y.; Gao, X.; Zhang, L. J.; Wu, X. M.; Wang, Q. G.; Luo, C. Y.; Wu, G. L. Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Appl. Surf. Sci. 2019, 480, 830–838.

[50]

Sun, L.; Shi, Z. C.; He, B. L.; Wang, H. L.; Liu, S.; Huang, M. H.; Shi, J.; Dastan, D.; Wang, H. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: A novel design targeting advanced energy storage capacitors. Adv. Funct. Mater. 2021, 31, 2100280.

[51]

Ding, J. W.; Shi, R. R.; Gong, C. C.; Wang, C. X.; Guo, Y.; Chen, T.; Zhang, Y. J.; Cong, H. W.; Shi, C. S.; He, F. Defect engineering activates Schottky heterointerfaces of graphene/CoSe2 composites with ultrathin and lightweight design strategies to boost electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2305463.

[52]

Lan, D.; Wang, Y.; Wang, Y. Y.; Zhu, X. F.; Li, H. F.; Guo, X. M.; Ren, J. N.; Guo, Z. H.; Wu, G. L. Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 2023, 651, 494–503.

[53]

Rao, L. J.; Liu, Z. W.; Wang, L.; You, W. B.; Yang, C. D.; Zhang, R. X.; Xiong, X. H.; Yang, L. T.; Zhang, H. B.; Zhang, J. C. et al. Dimensional engineering of hierarchical nanopagodas for customizing cross-scale magnetic coupling networks to enhance electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2306984.

[54]

Chen, X. L.; Zhang, F.; Lan, D.; Zhang, S. J.; Du, S. X.; Zhao, Z. W.; Ji, G. B.; Wu, G. L. State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: From the perspective of nitrogen source. Adv. Compos. Hybrid Mater. 2023, 6, 220.

[55]

Lv, H. L.; Yao, Y. X.; Li, S. C.; Wu, G. L.; Zhao, B.; Zhou, X. D.; Dupont, R. L.; Kara, U. I.; Zhou, Y. M.; Xi, S. B. et al. Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 2023, 14, 1982.

[56]

Wang, Y.; Gao, X.; Wu, X. M.; Zhang, W. Z.; Luo, C. Y.; Liu, P. B. Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber. Chem. Eng. J. 2019, 375, 121942.

[57]

Wang, B. L.; Ding, M. C.; Shao, C. X.; Yu, J. H.; Kong, H. J.; Zhao, D. M.; Li, C. W. Facile synthesis of Co x Fe y @C nanocomposite fibers derived from pyrolysis of cobalt/iron chelate nanowires for strong broadband electromagnetic wave absorption. Chem. Eng. J. 2023, 465, 142803.

[58]

Yang, Y. N.; Xia, L.; Zhang, T.; Shi, B.; Huang, L. N.; Zhong, B.; Zhang, X. Y.; Wang, H. T.; Zhang, J.; Wen, G. W. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 2018, 352, 510–518.

[59]

Yang, X.; Xuan, L. X.; Men, W. W.; Wu, X.; Lan, D.; Shi, Y. P.; Jia, H. X.; Duan, Y. P. Carbonyl iron/glass fiber cloth composites: Achieving multi-spectrum stealth in a wide temperature range. Chem. Eng. J. 2024, 491, 151862.

[60]

Chen, X. L.; Lan, D.; Zhou, L. T.; Zeng, Z.; Liu, Y. K.; Du, S. X.; Zou, Z. Y.; Wu, G. L. Rational construction of ZnFe2O4 decorated hollow carbon cloth towards effective electromagnetic wave absorption. Ceram. Int. 2024, 50, 24549–24557.

[61]

Wang, J. Y.; Wang, Y. Q.; Jiang, R.; Chen, S. S.; He, Q. C.; Wu, G. L. Self-assembly of submillimeter porous structure on metal-organic framework to construct heterogeneous interface for controlling microwave absorption. Mater. Today Phys. 2023, 35, 101126.

[62]

Qin, M.; Lan, D.; Wu, G. L.; Qiao, X. G.; Wu, H. J. Sodium citrate assisted hydrothermal synthesis of nickel cobaltate absorbers with tunable morphology and complex dielectric parameters toward efficient electromagnetic wave absorption. Appl. Surf. Sci. 2020, 504, 144480.

[63]

Wang, S. S.; Feng, D.; Y.; Zhang, Z. M.; Liu, X.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@ f-CNTs networks via self-sacrificing template method. Chin. J. Polym. Sci. 2024, 42, 897–906.

[64]

Song, X. T.; Fan, G. H.; Liu, Y.; Fan, R. H. MOF-derived ZrO2/C-polyvinylidene fluoride composite towards negative permittivity regulation mechanism. J. Mater. Sci. Technol. 2024, 179, 50–56.

[65]

Wu, H. J.; Zhao, Z. H.; Wu, G. L. Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption. J. Colloid Interface Sci. 2020, 566, 21–32.

[66]

Liu, Y.; Jia, Z. R.; Zhou, J. X.; Wu, G. L. Multi-hierarchy heterostructure assembling on MnO2 nanowires for optimized electromagnetic response. Mater. Today Phys. 2022, 28, 100845.

[67]

Huang, X. M.; Liu, X. H.; Zhang, Y.; Zhou, J. X.; Wu, G. L.; Jia, Z. R. Construction of NiCeO x nanosheets-skeleton cross-linked by carbon nanotubes networks for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 147, 16–25.

[68]

Miao, P.; Zhou, R.; Chen, K. J.; Liang, J.; Ban, Q. F.; Kong, J. Tunable electromagnetic wave absorption of supramolecular isomer-derived nanocomposites with different morphology. Adv. Mater. Interfaces 2020, 7, 1901820.

[69]

Lan, D.; Gao, Z. G.; Zhao, Z. H.; Kou, K. C.; Wu, H. J. Application progress of conductive conjugated polymers in electromagnetic wave absorbing composites. Compos. Commun. 2021, 26, 100767.

[70]

Wang, C. X.; Wang, B. B.; Cao, X.; Zhao, J. W.; Chen, L.; Shan, L. G.; Wang, H. N.; Wu, G. L. 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption. Compos. Part B: Eng. 2021, 205, 108529.

[71]

Chen, X. L.; Shi, T.; Zhong, K. L.; Wu, G. L.; Lu, Y. Capacitive behavior of MoS2 decorated with FeS2@carbon nanospheres. Chem. Eng. J. 2020, 379, 122240.

[72]

Zhang, X. P.; Wang, Q. Y.; Tang, Y. A.; Fan, G. H.; Hao, C. C.; Liu, Y. Decoration of conjugated polyacene quinone radical (PAQR) with Fe3O4 nanospheres achieving improved impedance matching and electromagnetic wave absorption. Mater. Today Phys. 2024, 41, 101349.

[73]

Fan, G. H.; Wang, Z. Y.; Ren, H.; Liu, Y.; Fan, R. H. Dielectric dispersion of copper/rutile cermets: Dielectric resonance, relaxation, and plasma oscillation. Scripta Mater. 2021, 190, 1–6.

[74]

Chen, X. L.; Zhong, K. L.; Shi, T.; Meng, X. L.; Wu, G. L.; Lu, Y. Urchin-like polyaniline/magnetic carbon sphere hybrid with excellent electromagnetic wave absorption performance. Synthetic Met. 2019, 248, 59–67.

[75]

Xie, A. M.; Zhang, K.; Sun, M. X.; Xia, Y. L.; Wu, F. Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption. Mater. Des. 2018, 154, 192–202.

[76]
Feng, A. L.; Liu, L.; Liu, P. T.; Zu, Y. Q.; Han, F. B.; Li, X. D.; Ding, S. J.; Chen, Y. N. Interfacial nanoparticles of Co2P/Co3Fe7 encapsulated in N-doped carbon nanotubes as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Mater. Today Energy, in press, DOI: 10.1016/j.mtener.2024.101626.
[77]

Shen, Z. Y.; Lan, D.; Cong, Y.; Lian, Y. Y.; Wu, N. N.; Jia, Z. R. Tailored heterogeneous interface based on porous hollow In–Co–C nanorods to construct adjustable multi-band microwave absorber. J. Mater. Sci. Technol. 2024, 181, 128–137.

[78]

Wang, Y.; Gao, X.; Lin, C. H.; Shi, L. Y.; Li, X. H.; Wu, G. L. Metal organic frameworks-derived Fe–Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloys Compd. 2019, 785, 765–773.

[79]

Liang, J.; Chen, J.; Shen, H. Q.; Hu, K. T.; Zhao, B. N.; Kong, J. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 2021, 33, 1789–1798.

[80]
Xie, X. B.; Wang, H. S.; Kimura, H.; Ni, C.; Du, W.; Wu, G. L. NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption. Int. J. Miner. Metall. Mater., in press, DOI: 10.1007/s12613-024-2880-1.
[81]

Qian, S. B.; Liu, G.; Yan, M.; Wu, C. Lightweight, self-cleaning and refractory FeCo@MoS2 PVA aerogels: From electromagnetic wave-assisted synthesis to flexible electromagnetic wave absorption. Rare Met. 2023, 42, 1294–1305.

[82]

Tang, X. Z.; Liao, Z. J.; Shi, H. L.; Wang, R.; Yue, J. L.; Chen, X. L. MoSe2 nanosheets decorated Co/C fibrous composite towards high efficiency electromagnetic wave absorption. Compos. Part A: Appl. Sci. Manuf. 2022, 163, 107169.

[83]

Guo, S. S.; Zhu, J. P.; Song, Z.; Ren, Q. G.; Feng, T.; Zhang, Q. T.; Wang, L. X. Multispectral ErBO3@ATO porous composite microspheres with laser and electromagnetic wave compatible absorption. Rare Met. 2023, 42, 2406–2418.

[84]

Wang, Z. Y.; Wang, Z.; Ning, M. Optimization of electromagnetic wave absorption bandwidth of cement-based composites with doped expanded perlite. Constr. Build. Mater. 2020, 259, 119863.

[85]

Wu, Y. Y.; Liu, X. F.; Wang, Z.; Ma, G. W.; Hao, Y. F. Optimization of multicomponent microwave absorbents for improved electromagnetic wave absorption of layered foamed cementitious materials. Constr. Build. Mater. 2023, 396, 132385.

[86]
Jia, Z. R.; Liu, J. K.; Gao, Z. G.; Zhang, C. H.; Wu, G. L. Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202405523.
[87]

Zhang, S. J.; Lan, D.; Chen, X. L.; Gu, Y. Y.; Ren, J. W.; Du, S. X.; Cai, S. C.; Zhao, X. M.; Zhao, Z. W.; Wu, G. L. Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities. Nano Res. 2024, 17, 1952–1983.

[88]

Lv, H. L.; Zhou, X. D.; Wu, G. L.; Kara, U. I.; Wang, X. G. Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 2021, 9, 19710–19718.

[89]

Feng, A. L.; Zhu, X.; Chen, Y. N.; Liu, P. T.; Han, F. B.; Zu, Y. Q.; Li, X. D.; Bi, P. F. Functional biomass-derived materials for the development of sustainable batteries. ChemElectroChem 2024, 11, e202400086.

[90]

Bai, Z. Y.; Yang, X. Y.; Wang, M. J.; Zhao, B.; Ren, Y. M.; Li, R. S.; Guo, X. Q.; Deng, J. S. Sulfur-vacancy engineering of natural molybdenite for enhanced EMW absorption. Chem. Eng. J. 2023, 466, 143337.

[91]

Ren, X. Y.; Gao, Z. G.; Wu, G. L. Tunable nano-effect of Cu clusters derived from MOF-on-MOF hybrids for electromagnetic wave absorption. Compos. Commun. 2022, 305, 101292.

[92]

Wang, L.; Bai, X. Y.; Wen, B.; Du, Z.; Lin, Y. Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos. Part B: Eng. 2019, 166, 464–471.

[93]

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

[94]

Liu, W.; Duan, P. T.; Mei, C.; Wan, K.; Zhang, B. W.; Su, H. L.; Zhang, X. B.; Zou, Z. Q. Optimizing the size-dependent dielectric properties of metal-organic framework-derived Co/C composites for highly efficient microwave absorption. Inorg. Chem. Front. 2021, 8, 2042–2051.

[95]

Liu, W.; Liu, L.; Yang, Z. H.; Xu, J. J.; Hou, Y. L.; Ji, G. B. A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 2018, 10, 8965–8975.

[96]

Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.

[97]

Huang, W. H.; Wang, S.; Yang, X. F.; Zhang, X. X.; Zhang, Y. N.; Pei, K.; Che, R. C. Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core–shell nanofiber network for enhanced electromagnetic wave adsorption. Carbon 2022, 195, 44–56.

[98]

Zhao, T. B.; Zheng, T. T.; Lan, D.; Zhang, Y.; Sun, Z. S.; Wang, C.; Jia, Z. R.; Wu, G. L. Self-assembly tungsten selenide hybrid ternary MOF derived magnetic alloys via multi-polarization to boost microwave absorption. Nano Res. 2024, 17, 1625–1635.

[99]

Tong, Z. Y.; Liao, Z. J.; Liu, Y. Y.; Ma, M. L.; Bi, Y. X.; Huang, W. B.; Ma, Y.; Qiao, M. T.; Wu, G. L. Hierarchical Fe3O4/Fe@C@MoS2 core–shell nanofibers for efficient microwave absorption. Carbon 2021, 179, 646–654.

[100]

Wang, Y. F.; Chen, D. L.; Yin, X.; Xu, P.; Wu, F.; He, M. Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2015, 7, 26226–26234.

[101]

Hu, F.; Dai, J. X.; Liu, Q.; Zhang, Z. Q.; Xu, G. L. Synthesis of flowerlike MoS2/CoNi composites for enhancing electromagnetic wave absorption. Acta Metall. Sin. 2022, 35, 890–900.

Nano Research
Pages 8250-8260
Cite this article:
Han Y, Lan D, Han M, et al. Construction of flower-like MoS2 decorated on Cu doped CoZn-ZIF derived N-doped carbon as superior microwave absorber. Nano Research, 2024, 17(9): 8250-8260. https://doi.org/10.1007/s12274-024-6859-z
Topics:

278

Views

6

Crossref

2

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 06 June 2024
Revised: 26 June 2024
Accepted: 02 July 2024
Published: 23 July 2024
© Tsinghua University Press 2024
Return