Journal Home > Just Accepted

Light-drive hydrogen production using titanium-based perovskite is one sustainable way to reduce current reliance on fossil fuels, but its wide applications are still limited by high electron-hole recombination and sluggish surface reaction. Thus, the developments for low-cost and highly efficient co-catalysts remain urgent. Inspired by natural [NiFe]-hydrogenase active center structure, a hydrogenase-mimic, NiCo2S4 nanozyme was synthesized, and subsequently decorated onto the CaTiO3 to catalyze the hydrogen evolution reaction (HER). Among the following test, CaTiO3 with a 15% loading of NiCo2S4 nanozyme exhibited the highest HER rate of 307.76 μmol·g-1·h-1, which is 60 times higher than that of the CaTiO3 alone. The results revealed that NiCo2S4 not only significantly increased the charge separation efficiency of the photogenerated carriers, but also substantively lowered the HER activation energy. Mechanism studies show that NiCo2S4 readily splits H2O by forming the Ni(OH)-Co intermediate and only Ni in the bimetallic center alters the oxidation state during the HER process in a manner analogous to the [NiFe]-hydrogenase. In contrast to the often-expensive synthetic catalysts that rely on rare elements such as ruthenium or platinum, this study shows a promising way to develop the nature-inspired cocatalysts to enhance the photocatalysts’ HER performance.

Publication history
Copyright
Rights and permissions

Publication history

Received: 04 March 2024
Revised: 26 March 2024
Accepted: 27 March 2024
Available online: 28 March 2024

Copyright

© Tsinghua University Press 2024

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return