Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Electrolytes with high-efficiency lithium-ion transfer and reliable safety are of great importance for lithium battery. Although having superior ionic conductivity (10−3–10−2 S·cm−1), traditional liquid-state electrolytes always suffer from low lithium-ion transference number (
Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.
Goodenough, J. B. How we made the Li-ion rechargeable battery. Nat. Electron. 2018, 1, 204.
Li, J. J.; Hu, H. M.; Fang, W. H.; Ding, J. W.; Yuan, D.; Luo, S. J.; Zhang, H. T.; Ji, X. Y. Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries. Adv. Funct. Mater. 2023, 33, 2303718.
Yao, M.; Ruan, Q. Q.; Pan, S. S.; Zhang, H. T.; Zhang, S. J. An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 2023, 13, 2203640.
Mishra, K.; Devi, N.; Siwal, S. S.; Zhang, Q. B.; Alsanie, W. F.; Scarpa, F.; Thakur, V. K. Ionic liquid-based polymer nanocomposites for sensors, energy, biomedicine, and environmental applications: Roadmap to the future. Adv. Sci. 2022, 9, 2202187.
Jeoun, Y.; Kim, K.; Kim, S. Y.; Lee, S. H.; Huh, S. H.; Kim, S. H.; Huang, X.; Sung, Y. E.; Abruña, H. D.; Yu, S. H. Surface roughness-independent homogeneous lithium plating in synergetic conditioned electrolyte. ACS Energy Lett. 2022, 7, 2219–2227.
Amanchukwu, C. V.; Yu, Z. A.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. J. Am. Chem. Soc. 2020, 142, 7393–7403.
Ruan, Q. Q.; Yao, M.; Yuan, D.; Dong, H. T.; Liu, J. X.; Yuan, X. D.; Fang, W. H.; Zhao, G. Y.; Zhang, H. T. Ionic liquid crystal electrolytes: Fundamental, applications and prospects. Nano Energy 2023, 106, 108087.
Giffin, G. A. The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 2022, 13, 5250.
Yu, Z.; Balsara, N. P.; Borodin, O.; Gewirth, A. A.; Hahn, N. T.; Maginn, E. J.; Persson, K. A.; Srinivasan, V.; Toney, M. F.; Xu, K. et al. Beyond local solvation structure: Nanometric aggregates in battery electrolytes and their effect on electrolyte properties. ACS Energy Lett. 2022, 7, 461–470.
Zhou, P.; Zhang, X. K.; Xiang, Y.; Liu, K. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries. Nano Res. 2023, 16, 8055–8071.
Qiao, B.; Leverick, G. M.; Zhao, W.; Flood, A. H.; Johnson, J. A.; Shao-Horn, Y. Supramolecular regulation of anions enhances conductivity and transference number of lithium in liquid electrolytes. J. Am. Chem. Soc. 2018, 140, 10932–10936.
Nan, B.; Chen, L.; Rodrigo, N. D.; Borodin, O.; Piao, N.; Xia, J. L.; Pollard, T.; Hou, S.; Zhang, J. X.; Ji, X. et al. Enhancing Li+ transport in NMC811||graphite lithium-ion batteries at low temperatures by using low-polarity-solvent electrolytes. Angew. Chem., Int. Ed. 2022, 61, e202205967.
Xu, Y.; Yan, H. H.; Li, T.; Liu, Y.; Luo, J. M.; Li, W. Y.; Cui, X. Y.; Chen, L.; Yue, Q.; Kang, Y. J. Can carbon sponge be used as separator in Li metal batteries. Energy Storage Mater. 2021, 36, 108–114.
Jiang, Y. X.; Song, Y. D.; Chen, X.; Wang, H. J.; Deng, L. J.; Yang, G. In situ formed self-healable quasi-solid hybrid electrolyte network coupled with eutectic mixture towards ultra-long cycle life lithium metal batteries. Energy Storage Mater. 2022, 52, 514–523
Wang, Y. J.; Li, L. B.; Wei, Y. Y.; Xue, J.; Chen, H.; Ding, L.; Caro, J.; Wang, H. H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew. Chem., Int. Ed. 2017, 56, 8974–8980.
Hu, C. Y.; Achari, A.; Rowe, P.; Xiao, H.; Suran, S.; Li, Z.; Huang, K.; Chi, C.; Cherian, C. T.; Sreepal, V. et al. pH-de pendent water permeability switching and its memory in MoS2 membranes. Nature 2023, 616, 719–723
Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.
Wang, J.; Zhou, H. J.; Li, S. Z.; Wang, L. Selective ion transport in two-dimensional lamellar nanochannel membranes. Angew. Chem., Int. Ed. 2023, 62, e202218321.
Ding, L.; Wei, Y. Y.; Li, L. B.; Zhang, T.; Wang, H. H.; Xue, J.; Ding, L. X.; Wang, S. Q.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018, 9, 155.
Jia, Z. M.; Li, X. F.; Zhang, J.; He, N. N.; Long, H. H.; Zou, Y. D.; Zhang, Y. D.; Jiang, B.; Qi, Y.; Li, Y. et al. Monodisperse covalent organic nanosheets by in-situ oxidation method for efficient ion/molecule separation. J. Membr. Sci. 2023, 683, 121783.
Jia, W.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration. Nano Res. 2020, 13, 2973–2978.
Sapkota, B.; Liang, W. T.; VahidMohammadi, A.; Karnik, R.; Noy, A.; Wanunu, M. High permeability sub-nanometre sieve composite MoS2 membranes. Nat. Commun. 2020, 11, 2747.
Zhang, Y. F.; Huang, J. J.; Liu, H.; Kou, W. J.; Dai, Y.; Dang, W.; Wu, W. J.; Wang, J. T.; Fu, Y. Z.; Jiang, Z. Y. Lamellar ionic liquid composite electrolyte for wide-temperature solid-state lithium-metal battery. Adv. Energy Mater. 2023, 13, 2300156.
Wu, J. X.; Liang, Q. H.; Yu, X. L.; Lü, Q. F.; Ma, L. B.; Qin, X. Y.; Chen, G. H.; Li, B. H. Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective. Adv. Funct. Mater. 2021, 31, 2011102.
Geng, L. S.; Wang, X. P.; Han, K.; Hu, P.; Zhou, L.; Zhao, Y. L.; Luo, W.; Mai, L. Q. Eutectic electrolytes in advanced metal-ion batteries. ACS Energy Lett. 2022, 7, 247–260.
Zhang, J. N.; Wu, H.; Du, X. F.; Zhang, H.; Huang, L.; Sun, F.; Liu, T. T.; Tian, S. W.; Zhou, L. X.; Hu, S. J. et al. Smart deep eutectic electrolyte enabling thermally induced shutdown toward high-safety lithium metal batteries. Adv. Energy Mater. 2023, 13, 2202529.
Zhang, C. K.; Zhang, L. Y.; Yu, G. H. Eutectic electrolytes as a promising platform for next-generation electrochemical energy storage. Acc. Chem. Res. 2020, 53, 1648–1659.
Wu, W. B.; Liang, Y. H.; Li, D. P.; Bo, Y. Y.; Wu, D.; Ci, L. J.; Li, M. Y.; Zhang, J. H. A competitive solvation of ternary eutectic electrolytes tailoring the electrode/electrolyte interphase for lithium metal batteries. ACS Nano 2022, 16, 14558–14568.
Shao, J. J.; Raidongia, K.; Koltonow, A. R.; Huang, J. X. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 2015, 6, 7602.
Boisset, A.; Menne, S.; Jacquemin, J.; Balducci, A.; Anouti, M. Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 20054–20063.
Boisset, A.; Jacquemin, J.; Anouti, M. Physical properties of a new deep eutectic solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochim. Acta 2013, 102, 120–126.
Liang, Y. H.; Wu, W. B.; Cao, J. W.; Guo, R. T.; Cao, M. M.; Zhang, J. C.; Wang, M.; Yu, W.; Zhang, J. Stable long cycling of small molecular organic acid electrode materials enabled by nonflammable eutectic electrolyte. Small 2022, 18, 2104538.
Liang, Y. H.; Wu, W. B.; Li, D. P.; Wu, H.; Gao, C. C.; Chen, Z. J.; Ci, L. J.; Zhang, J. H. Highly stable lithium metal batteries by regulating the lithium nitrate chemistry with a modified eutectic electrolyte. Adv. Energy Mater. 2022, 12, 2202493.
Song, Y. L.; Yang, L. Y.; Li, J. W.; Zhang, M. Z.; Wang, Y. H.; Li, S. N.; Chen, S. M.; Yang, K.; Xu, K.; Pan, F. Synergistic dissociation-and-trapping effect to promote Li-ion conduction in polymer electrolytes via oxygen vacancies. Small 2021, 17, 2102039.
Yu, L.; Yu, L.; Liu, Q.; Meng, T.; Wang, S.; Hu, X. L. Monolithic task-specific ionogel electrolyte membrane enables high-performance solid-state lithium-metal batteries in wide temperature range. Adv. Funct. Mater. 2022, 32, 2110653.
Wang, S. M.; Chen, Y.; Fang, Q.; Huang, J. J.; Wang, X. F.; Chen, S. M.; Zhang, S. J. Facilitating uniform lithium deposition via nanoconfinement of free amide molecules in solid electrolyte complexion for lithium metal batteries. Energy Storage Mater. 2023, 54, 596–604.
Wang, Z. Y.; Yang, L. S.; Dai, L. X.; Huang, Z. Y.; Wu, K. Y.; Liu, B. L. Scalable production of 2D minerals by polymer intercalation and adhesion for multifunctional applications. Small Methods 2023, 7, 2300529.
Pan, F. S.; Li, Y.; Song, Y. M.; Wang, M. D.; Zhang, Y.; Yang, H.; Wang, H. J.; Jiang, Z. Y. Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations. J. Membr. Sci. 2020, 595, 117486.
Li, X. Y.; Li, R. H.; Peng, K.; Fu, L. J.; Zhao, K. P.; Li, H. R.; Peng, J. H.; Wang, L. X. Interlayer functionalization of vermiculite derived silica with hierarchical layered porous structure for stable CO2 adsorption. Chem. Eng. J. 2022, 435, 134875.
Chen, Y.; Yu, D. K.; Fu, L.; Wang, M.; Feng, D. R.; Yang, Y. Z.; Xue, X. M.; Wang, J. F.; Mu, T. C. The dynamic evaporation process of the deep eutectic solvent LiTf2N: N-methylacetamide at ambient temperature. Phys. Chem. Chem. Phys. 2019, 21, 11810–11821.
Wang, C. Z.; Xu, N. K.; Huang, K.; Liu, B.; Zhang, P. H.; Yang, G.; Guo, H. L.; Bai, P.; Mintova, S. Emerging co-synthesis of dimethyl oxalate and dimethyl carbonate using Pd/silicalite-1 catalyst with synergistic interactions of Pd and silanols. Chem. Eng. J. 2023, 466, 143136.
Huang, Z. J.; He, D. D.; Deng, W. H.; Jin, G. W.; Li, K.; Luo, Y. M. Illustrating new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation. Nat. Commun. 2023, 14, 100.
Wu, L. S.; Hu, J. P.; Chen, S. J.; Yang, X. R.; Liu, L.; Foord, J. S.; Pobedinskas, P.; Haenen, K.; Hou, H. J.; Yang, J. K. Lithium nitrate mediated dynamic formation of solid electrolyte interphase revealed by in situ Fourier transform infrared spectroscopy. Electrochim. Acta 2023, 466, 142973.
Liu, Z. E.; Hu, Z. W.; Jiang, X. A.; Wang, X. W.; Li, Z.; Chen, Z. J.; Zhang, Y.; Zhang, S. G. Metal-organic framework confined solvent ionic liquid enables long cycling life quasi-solid-state lithium battery in wide temperature range. Small 2022, 18, 2203011.
Castillo, J.; Santiago, A.; Judez, X.; Garbayo, I.; Coca Clemente, J. A.; Morant-Miñana, M. C.; Villaverde, A.; González-Marcos, J. A.; Zhang, H.; Armand, M. et al. Safe, flexible, and high-performing gel-polymer electrolyte for rechargeable lithium metal batteries. Chem. Mater. 2021, 33, 8812–8821.
Zhu, J. X.; He, S.; Tian, H. Y.; Hu, Y. M.; Xin, C.; Xie, X. X.; Zhang, L. P.; Gao, J.; Hao, S. M.; Zhou, W. D. et al. The influences of DMF content in composite polymer electrolytes on Li+-conductivity and interfacial stability with Li-metal. Adv. Funct. Mater. 2023, 33, 2301165.
Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X. F.; Wang, T. Y.; Wang, Y. Z.; Kang, F. Y.; Li, B. H.; Wang, G. X. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 9134–9142.
Zhou, X. Y.; Li, X. G.; Li, Z.; Xie, H. X.; Fu, J. L.; Wei, L.; Yang, H.; Guo, X. Hybrid electrolytes with an ultrahigh Li-ion transference number for lithium-metal batteries with fast and stable charge/discharge capability. J. Mater. Chem. A 2021, 9, 18239–18246.
Du, J. M.; Duan, X. R.; Wang, W. Y.; Li, G. C.; Li, C. H.; Tan, Y. C.; Wan, M. T.; Seh, Z. W.; Wang, L.; Sun, Y. M. Mitigating concentration polarization through acid-base interaction effects for long-cycling lithium metal anodes. Nano Lett. 2023, 23, 3369–3376.