Journal Home > Online First

The oxygen evolution reaction (OER) electrocatalysts, which can keep active for a long time in acidic media, are of great significance to proton exchange membrane water electrolyzers. Here, Ru-Co3O4 electrocatalysts with transition metal oxide Co3O4 as matrix and the noble metal Ru as doping element have been prepared through an ion exchange–pyrolysis process mediated by metal-organic framework, in which Ru atoms occupy the octahedral sites of Co3O4. Experimental and theoretical studies show that introduced Ru atoms have a passivation effect on lattice oxygen. The strong coupling between Ru and O causes a negative shift in the energy position of the O p-band centers. Therefore, the bonding activity of oxygen in the adsorbed state to the lattice oxygen is greatly passivated during the OER process, thus improving the stability of matrix material. In addition, benefiting from the modulating effect of the introduced Ru atoms on the metal active sites, the thermodynamic and kinetic barriers have been significantly reduced, which greatly enhances both the catalytic stability and reaction efficiency of Co3O4.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Unraveling the modulation essence of p bands in Co-based oxide stability on acidic oxygen evolution reaction

Show Author's information Yafei Yang1Yihao Xu1Haiquan Liu1Qi Zhang1Boling Liu1Menghua Yang1Huan Dai1Zunjian Ke1Dong He1( )Xiaobo Feng2,3( )Xiangheng Xiao1( )
Department of Physics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
Yunnan Key Laboratory of Opto-electronic Information Technology, Kunming 650500, China

Abstract

The oxygen evolution reaction (OER) electrocatalysts, which can keep active for a long time in acidic media, are of great significance to proton exchange membrane water electrolyzers. Here, Ru-Co3O4 electrocatalysts with transition metal oxide Co3O4 as matrix and the noble metal Ru as doping element have been prepared through an ion exchange–pyrolysis process mediated by metal-organic framework, in which Ru atoms occupy the octahedral sites of Co3O4. Experimental and theoretical studies show that introduced Ru atoms have a passivation effect on lattice oxygen. The strong coupling between Ru and O causes a negative shift in the energy position of the O p-band centers. Therefore, the bonding activity of oxygen in the adsorbed state to the lattice oxygen is greatly passivated during the OER process, thus improving the stability of matrix material. In addition, benefiting from the modulating effect of the introduced Ru atoms on the metal active sites, the thermodynamic and kinetic barriers have been significantly reduced, which greatly enhances both the catalytic stability and reaction efficiency of Co3O4.

Keywords: stability, oxygen evolution reaction, p-band modulation, acidic oxygen evolution reaction (OER)

References(44)

[1]

Wang, Q. L.; Cheng, Y. Q.; Tao, H. B.; Liu, Y. H.; Ma, X. H.; Li, D. S.; Yang, H. B.; Liu, B. Long-term stability challenges and opportunities in acidic oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202216645.

[2]

Lin, Y. C.; Dong, Y.; Wang, X. Z.; Chen, L. Electrocatalysts for the oxygen evolution reaction in acidic media. Adv. Mater. 2023, 35, 2210565.

[3]

Liang, Z. J.; Shen, D.; Wang, L.; Fu, H. G. Recent progress of cobalt-based electrocatalysts for water splitting: Electron modulation, surface reconstitution, and applications. Nano Res. 2024, 17, 2234–2269

[4]

An, L.; Wei, C.; Lu, M.; Liu, H. W.; Chen, Y. B.; Scherer, G. G.; Fisher, A. C.; Xi, P. X.; Xu, Z. J.; Yan, C. H. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 2021, 33, 2006328.

[5]

Liu, M. M.; Zhang, C. Y.; Han, A. L.; Wang, L.; Sun, Y. J.; Zhu, C. N.; Li, R.; Ye, S. Modulation of morphology and electronic structure on MoS2-based electrocatalysts for water splitting. Nano Res. 2022, 15, 6862–6887.

[6]

Yang, Y. F.; He, D.; Feng, X. B.; Xiao, X. H. Low-dimension confinement effect in COF-based hetero-photocatalyst for energy-conversion application. SmartMat 2023, e1223.

[7]

Shan, J. Q.; Guo, C. X.; Zhu, Y. H.; Chen, S. M.; Song, L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Charge-redistribution-enhanced nanocrystalline Ru@IrO x electrocatalysts for oxygen evolution in acidic media. Chem 2019, 5, 445–459.

[8]

Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped ruir bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

[9]

Liu, Z. J.; Wang, G. J.; Guo, J. Y.; Wang, S. Y.; Zang, S. Q. Sub-2 nm IrO2/Ir nanoclusters with compressive strain and metal vacancies boost water oxidation in acid. Nano Res. 2023, 16, 334–342.

[10]

Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.

[11]

Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.

[12]

Wang, X. F.; Jang, H.; Liu, S. G.; Li, Z. J.; Zhao, X. H.; Chen, Y. F.; Kim, M. G.; Qin, Q.; Liu, X. E. Enhancing the catalytic kinetics and stability of Ru sites for acidic water oxidation by forming Brønsted acid sites in tungsten oxide matrix. Adv. Energy Mater. 2023, 13, 2301673.

[13]

Zhu, Y. M.; Wang, J. A.; Koketsu, T.; Kroschel, M.; Chen, J. M.; Hsu, S. Y.; Henkelman, G.; Hu, Z. W.; Strasser, P.; Ma, J. W. Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions. Nat. Commun. 2022, 13, 7754.

[14]

Lin, C.; Li, J. L.; Li, X. P.; Yang, S.; Luo, W.; Zhang, Y. J.; Kim, S. H.; Kim, D. H.; Shinde, S. S.; Li, Y. F. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012–1023.

[15]

Zhang, Z. Y.; Tan, Y. Y.; Zeng, T.; Yu, L. Y.; Chen, R. Z.; Cheng, N. C.; Mu, S. C.; Sun, X. L. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res. 2021, 14, 2353–2362.

[16]

Shan, J. Q.; Ye, C.; Chen, S. M.; Sun, T. L.; Jiao, Y.; Liu, L. M.; Zhu, C. Z.; Song, L.; Han, Y.; Jaroniec, M. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201–5211.

[17]

Tripathy, S. K.; Christy, M.; Park, N. H.; Suh, E. K.; Anand, S.; Yu, Y. T. Hydrothermal synthesis of single-crystalline nanocubes of Co3O4. Mater. Lett. 2008, 62, 1006–1009.

[18]

Hadjiev, V. G.; Iliev, M. N.; Vergilov, I. V. The Raman spectra of Co3O4. J. Phys. C: Solid State Phys. 1988, 21, L199–L201.

[19]

Zhao, Q.; Yan, Z. H.; Chen, C. C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211.

[20]

Guan, D. Q.; Ryu, G.; Hu, Z. W.; Zhou, J.; Dong, C. L.; Huang, Y. C.; Zhang, K. F.; Zhong, Y. J.; Komarek, A. C.; Zhu, M. et al. Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. Nat. Commun. 2020, 11, 3376.

[21]

Guo, X. L.; Wang, L. L.; Tan, Y. W. Hematite nanorods Co-doped with Ru cations with different valence states as high performance photoanodes for water splitting. Nano Energy 2015, 16, 320–328.

[22]

Susanti, D.; Tsai, D. S.; Huang, Y. S.; Korotcov, A.; Chung, W. H. Structures and electrochemical capacitive properties of RuO2 vertical nanorods encased in hydrous RuO2. J. Phys. Chem. C 2007, 111, 9530–9537.

[23]

Zhang, Y. D.; Wang, Q. Y.; Yang, S. K.; Wang, H. W.; Rao, D. W.; Chen, T.; Wang, G. M.; Lu, J. L.; Zhu, J. F.; Wei, S. Q. et al. Tuning the interaction between ruthenium single atoms and the second coordination sphere for efficient nitrogen photofixation. Adv. Funct. Mater. 2022, 32, 2112452.

[24]

Over, H.; Seitsonen, A. P.; Lundgren, E.; Smedh, M.; Andersen, J. N. On the origin of the Ru-3d5/2 satellite feature from RuO2(110). Surf. Sci. 2002, 504, L196–L200.

[25]

Liu, D.; Ding, T.; Wang, L. F.; Zhang, H. J.; Xu, L.; Pang, B. B.; Liu, X. K.; Wang, H. J.; Wang, J. H.; Wu, K. F. et al. In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution. Nat. Commun. 2023, 14, 1720.

[26]

Reuter, K.; Scheffler, M. Surface core-level shifts at an oxygen-rich Ru surface: O/Ru(0001) vs. RuO2(110). Surf. Sci. 2001, 490, 20–28.

[27]

Ren, F. F.; Xu, J. Y.; Feng, L. G. An effective bimetallic oxide catalyst of RuO2-Co3O4 for alkaline overall water splitting. Nano Res. 2024, 17, 3785–3793.

[28]

Tung, C. W.; Hsu, Y. Y.; Shen, Y. P.; Zheng, Y. X.; Chan, T. S.; Sheu, H. S.; Cheng, Y. C.; Chen, H. M. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 2015, 6, 8106.

[29]

Li, H. F.; Lu, G. Z.; Dai, Q. G.; Wang, Y. Q.; Guo, Y.; Guo, Y. L. Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Appl. Catal. B: Environ. 2011, 102, 475–483.

[30]

Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

[31]

Li, A. L.; Ooka, H.; Bonnet, N.; Hayashi, T.; Sun, Y. M.; Jiang, Q. K.; Li, C.; Han, H. X.; Nakamura, R. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions. Angew. Chem., Int. Ed. 2019, 58, 5054–5058.

[32]

Liang, H. F.; Cao, Z.; Xia, C.; Ming, F. W.; Zhang, W. L.; Emwas, A. H.; Cavallo, L.; Alshareef, H. N. Tungsten blue oxide as a reusable electrocatalyst for acidic water oxidation by plasma-induced vacancy engineering. CCS Chem. 2021, 3, 1553–1561.

[33]

Yang, X. L.; Li, H. N.; Lu, A. Y.; Min, S. X.; Idriss, Z.; Hedhili, M. N.; Huang, K. W.; Idriss, H.; Li, L. J. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy 2016, 25, 42–50.

[34]

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrO x /SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

[35]

Chivot, J.; Mendoza, L.; Mansour, C.; Pauporté, T.; Cassir, M. New insight in the behaviour of Co-H2O system at 25–150 °C, based on revised Pourbaix diagrams. Corros. Sci. 2008, 50, 62–69.

[36]

Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

[37]

Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521–13530.

[38]

Chen, H.; Shi, L.; Sun, K.; Zhang, K. X.; Liu, Q.; Ge, J. J.; Liang, X.; Tian, B. Y.; Huang, Y. L.; Shi, Z. P. et al. Protonated iridate nanosheets with a highly active and stable layered perovskite framework for acidic oxygen evolution. ACS Catal. 2022, 12, 8658–8666.

[39]

Stoerzinger, K. A.; Diaz-Morales, O.; Kolb, M.; Rao, R. R.; Frydendal, R.; Qiao, L.; Wang, X. R.; Halck, N. B.; Rossmeisl, J.; Hansen, H. A. et al. Orientation-dependent oxygen evolution on RuO2 without lattice exchange. ACS Energy Lett. 2017, 2, 876–881.

[40]

Huang, Z. F.; Xi, S. B.; Song, J. J.; Dou, S.; Li, X. G.; Du, Y. H.; Diao, C. Z.; Xu, Z. J.; Wang, X. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 2021, 12, 3992.

[41]

Wang, J.; He, D.; Chen, R.; Xu, H.; Wang, H. B.; Yang, M. H.; Zhang, Q.; Jiang, C. Z.; Li, W. Q.; Ouyang, X. P. et al. Low operating voltage memtransistors based on ion bombarded p-type GeSe nanosheets for artificial synapse applications. InfoMat 2023, 5, e12476.

[42]

Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.

[43]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[44]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

File
6593_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 January 2024
Revised: 26 February 2024
Accepted: 26 February 2024
Published: 11 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 12025503, U23B2072, and 12105208). The authors would like to acknowledge the beamlines BL20U in the Shanghai Synchrotron Radiation Facility (SSRF). The authors acknowledge the Super-computing Center of Wuhan University and University of Science and Technology of China for the numerical calculations support. We also acknowledge the Center for Electron Microscopy at Wuhan University for their substantial supports to JEM-F200.

Return