Journal Home > Online First

Pt single atoms catalysts with precise coordination environment and high stability are expected to achieve high performance of propane dehydrogenation (PDH). In this work, an innovative synthetic strategy is proposed to construct the S-1@0.1Pt9Zn@DPS-1 nanocomposite as a highly efficient PDH catalyst. Defect engineering is applied to induce the formation of defective porous silicalite-1 (DPS-1), which is favorable for achieving the uniformly distributed ZnO nanoclusters. The ZnO nanoclusters were further served as anchoring sites to stabilize the isolated Pt atoms. The structural characterization revealed that penta-O coordinated Pt single atom coupled with ZnO nanoclusters decorated on the DPS-1. Moreover, the atomically dispersed Pt atoms with the ideal coordination environment could act as the predominant active sites for PDH process. As expected, the optimal S-1@0.1Pt9Zn@DPS-1 catalyst delivered an excellent PDH performance (propane conversion of 40.7%, propylene selectivity of 97.5%) and good cycling regeneration stability. This work provides a new way for improving the activity and stability of catalysts in the field of industrial catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting propane dehydrogenation of defective S-1 stabilized single-atom Pt and ZnO catalysts via coordination environment regulation

Show Author's information Fuwen Yang1Jie Zhang1( )Jinwei Chen1,2Gang Wang1Tong Yu1Qian Li1Zongbo Shi3Qiushi Sun3Runsheng Zhuo1,3Ruilin Wang1,2( )
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
REZEL Catalysts Corporation, Shanghai 200120, China

Abstract

Pt single atoms catalysts with precise coordination environment and high stability are expected to achieve high performance of propane dehydrogenation (PDH). In this work, an innovative synthetic strategy is proposed to construct the S-1@0.1Pt9Zn@DPS-1 nanocomposite as a highly efficient PDH catalyst. Defect engineering is applied to induce the formation of defective porous silicalite-1 (DPS-1), which is favorable for achieving the uniformly distributed ZnO nanoclusters. The ZnO nanoclusters were further served as anchoring sites to stabilize the isolated Pt atoms. The structural characterization revealed that penta-O coordinated Pt single atom coupled with ZnO nanoclusters decorated on the DPS-1. Moreover, the atomically dispersed Pt atoms with the ideal coordination environment could act as the predominant active sites for PDH process. As expected, the optimal S-1@0.1Pt9Zn@DPS-1 catalyst delivered an excellent PDH performance (propane conversion of 40.7%, propylene selectivity of 97.5%) and good cycling regeneration stability. This work provides a new way for improving the activity and stability of catalysts in the field of industrial catalysts.

Keywords: coordination environment, defect engineering, propane dehydrogenation, single platinum atom, propylene

References(66)

[1]

Otroshchenko, T.; Jiang, G. Y.; Kondratenko, V. A.; Rodemerck, U.; Kondratenko, E. V. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem. Soc. Rev. 2021, 50, 473–527.

[2]

Qi, L.; Babucci, M.; Zhang, Y. F.; Lund, A.; Liu, L. M.; Li, J. W.; Chen, Y. Z.; Hoffman, A. S.; Bare, S. R.; Han, Y. et al. Propane dehydrogenation catalyzed by isolated Pt atoms in ≡SiOZn–OH nests in dealuminated zeolite Beta. J. Am. Chem. Soc. 2021, 143, 21364–21378.

[3]

Wang, W.; Chen, S.; Pei, C. L.; Luo, R.; Sun, J. C.; Song, H. B.; Sun, G. D.; Wang, X. H.; Zhao, Z. J.; Gong, J. L. Tandem propane dehydrogenation and surface oxidation catalysts for selective propylene synthesis. Science 2023, 381, 886–890.

[4]

Yang, F. W.; Zhang, J.; Shi, Z. B.; Chen, J. W.; Wang, G.; He, J. J.; Zhao, J. Y.; Zhuo, R. S.; Wang, R. L. Advanced design and development of catalysts in propane dehydrogenation. Nanoscale 2022, 14, 9963–9988.

[5]

Nakaya, Y.; Xing, F. L.; Ham, H.; Shimizu, K. I.; Furukawa, S. Doubly decorated platinum-gallium intermetallics as stable catalysts for propane dehydrogenation. Angew. Chem., Int. Ed. 2021, 60, 19715–19719.

[6]

Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. O.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19450–19459.

[7]

Liu, H.; Zhou, J.; Chen, T. X.; Hu, P.; Xiong, C.; Sun, Q. D.; Chen, S. W.; Lo, T. W. B.; Ji, H. B. Isolated Pt species anchored by hierarchical-like heteroatomic Fe-silicalite-1 catalyze propane dehydrogenation near the thermodynamic limit. ACS Catal. 2023, 13, 2928–2936.

[8]

Chang, X.; Zhao, Z. J.; Lu, Z. P.; Chen, S.; Luo, R.; Zha, S. J.; Li, L. L.; Sun, G. D.; Pei, C. L.; Gong, J. L. Designing single-site alloy catalysts using a degree-of-isolation descriptor. Nat. Nanotechnol. 2023, 18, 611–616.

[9]

Nakaya, Y.; Hayashida, E.; Asakura, H.; Takakusagi, S.; Yasumura, S.; Shimizu, K. I.; Furukawa, S. High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation. J. Am. Chem. Soc. 2022, 144, 15944–15953.

[10]

Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S. J.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.

[11]

Zhou, J.; Zhang, Y.; Liu, H.; Xiong, C.; Hu, P.; Wang, H.; Chen, S. W.; Ji, H. B. Enhanced performance for propane dehydrogenation through Pt clusters alloying with copper in zeolite. Nano Res. 2023, 16, 6537–6543

[12]

A. R.; Gloag, L.; Watt, J.; Cheong, S.; Tan, X.; Lei, H.; Tahini, H. A.; Henson, A.; Subhash, B.; Bedford, N. M. et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 2022, 5, 231–237

[13]

Gan, Z. R.; Lu, Z.; Bunian, M.; Lagria, L. B.; Marshall, C. L.; Banish, R. M.; Lee, S.; Lei, Y. Synthesis of Pt3Zn1 and Pt1Zn1 intermetallic nanocatalysts for dehydrogenation of ethane. Phys. Chem. Chem. Phys. 2023, 25, 7144–7153.

[14]

Chen, S.; Zhao, Z. J.; Mu, R. T.; Chang, X.; Luo, J.; Purdy, S. C.; Kropf, A. J.; Sun, G. D.; Pei, C. L.; Miller, J. T. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 2021, 7, 387–405.

[15]

Han, S. W.; Park, H.; Han, J.; Kim, J. C.; Lee, J.; Jo, C.; Ryoo, R. PtZn intermetallic compound nanoparticles in mesoporous zeolite exhibiting high catalyst durability for propane dehydrogenation. ACS Catal. 2021, 11, 9233–9241.

[16]

Nakaya, Y.; Hirayama, J.; Yamazoe, S.; Shimizu, K. I.; Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 2020, 11, 2838.

[17]

Wang, P.; Yao, J. K.; Jiang, Q. K.; Gao, X. H.; Lin, D.; Yang, H.; Wu, L. Z.; Tang, Y.; Tan, L. Stabilizing the isolated Pt sites on PtGa/Al2O3 catalyst via silica coating layers for propane dehydrogenation at low temperature. Appl. Catal. B Environ. 2022, 300, 120731.

[18]

Liu, L. C.; Díaz, U.; Arenal, R.; Agostini, G.; Concepción, P.; Corma, A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 2017, 16, 132–138.

[19]

Tan, W.; Xie, S. H.; Cai, Y. D.; Wang, M. Y.; Yu, S. H.; Low, K. B.; Li, Y. J.; Ma, L.; Ehrlich, S. N.; Gao, F. et al. Transformation of highly stable Pt single sites on defect engineered ceria into robust Pt clusters for vehicle emission control. Environ. Sci. Technol. 2021, 55, 12607–12618.

[20]

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

[21]

Yang, F. W.; Zhang, J.; Shi, Z. B.; Chen, J. W.; Wang, G.; Zhao, J. Y.; Zhuo, R. S.; Wang, R. L. Regulation of active ZnO species on Si-based supports with diverse textural properties for efficient propane dehydrogenation. ChemCatChem 2023, 15, e202300407.

[22]

Chen, Y.; Wang, X. P.; Zhang, L. J. A strategy for fast and facile embedding platinum nanoparticles in silicalite-1 crystallites with a stable and catalytic active structure. Chem. Eng. J. 2020, 394, 124990.

[23]

Motagamwala, A. H.; Almallahi, R.; Wortman, J.; Igenegbai, V. O.; Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 2021, 373, 217–222.

[24]

Huang, C. M.; Han, D. M.; Guan, L. J.; Zhu, L. H.; Mei, Y.; He, D. D.; Zu, Y. Bimetallic Ni-Zn site anchored in siliceous zeolite framework for synergistically boosting propane dehydrogenation. Fuel 2022, 307, 121790.

[25]

Xie, L. J.; Wang, R.; Chai, Y. C.; Weng, X. F.; Guan, N. J.; Li, L. D. Propane dehydrogenation catalyzed by in-situ partially reduced zinc cations confined in zeolites. J. Energy Chem. 2021, 63, 262–269.

[26]

Zhu, Y. F.; Kong, X.; Yin, J. Q.; You, R.; Zhang, B.; Zheng, H. Y.; Wen, X. D.; Zhu, Y. L.; Li, Y. W. Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. J. Catal. 2017, 353, 315–324.

[27]

Zhou, J.; Liu, H.; Xiong, C.; Hu, P.; Wang, H.; Wang, X. Y.; Ji, H. B. Potassium-promoted Pt-In bimetallic clusters encapsulated in silicalite-1 zeolite for efficient propane dehydrogenation. Chem. Eng. J. 2023, 455, 139794.

[28]

Su, X. M.; Hu, Z. P.; Han, J. F.; Jia, Y. H.; Xu, S. T.; Zhang, J.; Fan, D.; Wei, Y. X.; Liu, Z. M. Biomolecule-inspired synthesis of framework zinc in MFI zeolite for propane dehydrogenation. Micropor. Mesopor. Mater. 2023, 348, 112371.

[29]

Zhao, D.; Guo, K.; Han, S. L.; Doronkin, D. E.; Lund, H.; Li, J. S.; Grunwaldt, J. D.; Zhao, Z.; Xu, C. M.; Jiang, G. Y. et al. Controlling reaction-induced loss of active sites in ZnO x /silicalite-1 for durable nonoxidative propane dehydrogenation. ACS Catal. 2022, 12, 4608–4617.

[30]

Wang, P.; Liao, H. F.; Yang, H.; Lv, Q.; Li, Y. R.; Wu, L. Z.; Tang, Y.; Xie, Z. L.; Tan, L. Constructing PtCe cluster catalysts by regulating metal–support interaction via Al in zeolite for propane dehydrogenation. Chem. Eng. Sci. 2023, 269, 118450.

[31]

Fan, X. Q.; Liu, D. D.; Sun, X. Y.; Yu, X. H.; Li, D.; Yang, Y.; Liu, H. Y.; Diao, J. Y.; Xie, Z. A.; Kong, L. et al. Mn-doping induced changes in Pt dispersion and Pt x Mn y alloying extent on Pt/Mn-DMSN catalyst with enhanced propane dehydrogenation stability. J. Catal. 2020, 389, 450–460.

[32]

Han, D. M.; Liu, M. Y.; Huang, C. M.; Sun, X. Y.; Guan, L. J.; He, B. B.; Mei, Y.; Zu, Y. Uniformly stable hydroxylated cobalt(II) silicate species embedded within silicalite-1 zeolite for boosting propane dehydrogenation. Micropor. Mesopor. Mater. 2023, 352, 112516.

[33]

Hu, P. D.; Iyoki, K.; Yamada, H.; Yanaba, Y.; Ohara, K.; Katada, N.; Wakihara, T. Synthesis and characterization of MFI-type zincosilicate zeolites with high zinc content using mechanochemically treated Si-Zn oxide composite. Micropor. Mesopor. Mater. 2019, 288, 109594.

[34]

Hu, Z. P.; Qin, G. Q.; Han, J. F.; Zhang, W. N.; Wang, N.; Zheng, Y. J.; Jiang, Q. K.; Ji, T.; Yuan, Z. Y.; Xiao, J. P. et al. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation. J. Am. Chem. Soc. 2022, 144, 12127–12137.

[35]

Harris, J. W.; Cordon, M. J.; Di Iorio, J. R.; Vega-Vila, J. C.; Ribeiro, F. H.; Gounder, R. Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization. J. Catal. 2016, 335, 141–154.

[36]

Zhang, B. F.; Li, G. Z.; Zhai, Z. W.; Chen, D. L.; Tian, Y. J.; Yang, R. O.; Wang, L.; Zhang, X. W.; Liu, G. Z. PtZn intermetallic nanoalloy encapsulated in silicalite-1 for propane dehydrogenation. AIChE J. 2021, 67, e17295.

[37]

Piva, D. H.; Piva, R. H.; Ghojavand, S.; Pautrat, A.; Debost, M.; Urquieta-González, E. A.; Mintova, S. Synthesis of core–shell magnetic nanoparticles containing ultrasmall domains of silicalite-1. Adv. Mater. Interfaces 2023, 10, 2201961.

[38]

Palčić, A.; Moldovan, S.; El Siblani, H.; Vicente, A.; Valtchev, V. Defect sites in zeolites: Origin and healing. Adv. Sci. 2022, 9, 2104414.

[39]

Deng, L. D.; Chen, Q.; Jiang, X. M.; Liu, X. W.; Wang, Z. Effect of In addition on the performance of a Pt-In/SBA-15 catalyst for propane dehydrogenation. Catal. Today 2023, 410, 175–183.

[40]

Xie, L. J.; Chai, Y. C.; Sun, L. L.; Dai, W. L.; Wu, G. J.; Guan, N. J.; Li, L. D. Optimizing zeolite stabilized Pt-Zn catalysts for propane dehydrogenation. J. Energy Chem. 2021, 57, 92–98.

[41]

Liu, H.; Liu, Y.; Zhang, X. C.; Hu, P.; Zhou, J.; Wang, H.; Hu, J. L.; Chen, S. W.; Ji, H. B. Effect of different properties of silicon-based support on propane dehydrogenation performance of PtZn bimetallic catalyst. Fuel 2023, 332, 125858.

[42]

Liu, X. H.; Wang, X. H.; Zhen, S. Y.; Sun, G. D.; Pei, C. L.; Zhao, Z. J.; Gong, J. L. Support stabilized PtCu single-atom alloys for propane dehydrogenation. Chem. Sci. 2022, 13, 9537–9543.

[43]

Wang, L.; Yang, Y. S.; Shi, Y. W.; Liu, W.; Tian, Z. W.; Zhang, X.; Zheng, L. R.; Hong, S.; Wei, M. Single-atom catalysts with metal-acid synergistic effect toward hydrodeoxygenation tandem reactions. Chem Catal. 2023, 3, 100483.

[44]

Zhou, Y.; Xi, W.; Xie, Z. X.; You, Z. X.; Jiang, X. Z.; Han, B.; Lang, R.; Wu, C. D. High-loading Pt single-atom catalyst on CeO2-modified diatomite support. Chem.—Asian J. 2021, 16, 2622–2625.

[45]

Liu, J.; Liu, Y.; Liu, H. C.; Fu, Y.; Chen, Z. Y.; Zhu, W. L. Silicalite-1 supported ZnO as an efficient catalyst for direct propane dehydrogenation. ChemCatChem 2021, 13, 4780–4786.

[46]

Chen, C.; Hu, Z. P.; Ren, J. T.; Zhang, S. M.; Wang, Z.; Yuan, Z. Y. ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene. Mol. Catal. 2019, 476, 110508.

[47]

Liu, G. D.; Liu, J. X.; He, N.; Sheng, S. S.; Wang, G. R.; Guo, H. C. Pt supported on Zn modified silicalite-1 zeolite as a catalyst for n-hexane aromatization. J. Energy Chem. 2019, 34, 96–103.

[48]

Song, M. X.; Zhang, B. F.; Zhai, Z. W.; Liu, S. B.; Wang, L.; Liu, G. Z. Highly dispersed Pt stabilized by ZnO x -Si on self-pillared zeolite nanosheets for propane dehydrogenation. Ind. Eng. Chem. Res. 2023, 62, 3853–3861.

[49]

Wang, H.; Zhang, X. Y.; Su, Z. P.; Chen, T. H. Amorphous CeO x islands on dealuminated zeolite Beta to stabilize Pt nanoparticles as efficient and antisintering catalysts for propane dehydrogenation. Langmuir 2023, 39, 18366–18379.

[50]

Wang, P.; Liao, H. F.; Yang, M.; Wu, L. Z.; Tang, Y.; Tan, L. Constructing rich-Zn Pt1Zn1 alloy over the BEA zeolite as a selective catalyst for propane dehydrogenation. Fuel 2023, 354, 129421.

[51]

Shi, X. X.; Chen, S.; Li, S.; Yang, Y. Q.; Guan, Q. Q.; Ding, J. N.; Liu, X. Y.; Liu, Q.; Xu, W. L.; Lu, J. L. Particle size effect of SiO2-supported ZnO catalysts in propane dehydrogenation. Catal. Sci. Technol. 2023, 13, 1866–1873.

[52]

Han, S. L.; Zhao, D.; Otroshchenko, T.; Lund, H.; Bentrup, U.; Kondratenko, V. A.; Rockstroh, N.; Bartling, S.; Doronkin, D. E.; Grunwaldt, J. D. et al. Elucidating the nature of active sites and fundamentals for their creation in Zn-containing ZrO2-based catalysts for nonoxidative propane dehydrogenation. ACS Catal. 2020, 10, 8933–8949.

[53]

Ingale, P.; Knemeyer, K.; Preikschas, P.; Ye, M. Y.; Geske, M.; D'Alnoncourt, R. N.; Thomas, A.; Rosowski, F. Design of PtZn nanoalloy catalysts for propane dehydrogenation through interface tailoring via atomic layer deposition. Catal. Sci. Technol. 2021, 11, 484–493.

[54]

Liu, G.; Zeng, L.; Zhao, Z. J.; Tian, H.; Wu, T. F.; Gong, J. L. Platinum-modified ZnO/Al2O3 for propane dehydrogenation: Minimized platinum usage and improved catalytic stability. ACS Catal. 2016, 6, 2158–2162.

[55]

Sun, M. L.; Hu, Z. P.; Wang, H. Y.; Suo, Y. J.; Yuan, Z. Y. Design strategies of stable catalysts for propane dehydrogenation to propylene. ACS Catal. 2023, 13, 4719–4741.

[56]

Zhang, B. F.; Li, G. Z.; Liu, S. B.; Qin, Y. C.; Song, L. J.; Wang, L.; Zhang, X. W.; Liu, G. Z. Boosting propane dehydrogenation over PtZn encapsulated in an epitaxial high-crystallized zeolite with a low surface barrier. ACS Catal. 2022, 12, 1310–1314.

[57]

Ye, C. L.; Peng, M.; Li, Y.; Wang, D. S.; Chen, C.; Li, Y. D. Atomically dispersed Pt in ordered PtSnZn intermetallic with Pt-Sn and Pt-Zn pairs for selective propane dehydrogenation. Sci. China Mater. 2023, 66, 1071–1078.

[58]

Lezcano-González, I.; Cong, P. X.; Campbell, E.; Panchal, M.; Agote-Arán, M.; Celorrio, V.; He, Q.; Oord, R.; Weckhuysen, B. M.; Beale, A. M. Structure-activity relationships in highly active platinum-tin MFI-type zeolite catalysts for propane dehydrogenation. ChemCatChem 2022, 14, e202101828.

[59]

Wang, T. L.; Xu, Z. K.; Yue, Y. Y.; Wang, T. H.; Lin, M. G.; Zhu, H. B. Bimetallic PtSn nanoparticles confined in hierarchical ZSM-5 for propane dehydrogenation. Chin. J. Chem. Eng. 2022, 41, 384–391.

[60]

Li, Y. M.; Ma, Y. J.; Zhang, Q. Y.; Kondratenko, V. A.; Jiang, G. L.; Sun, H. Q.; Han, S. L.; Wang, Y. J.; Cui, G. Q.; Zhou, M. X. et al. Molecularly defined approach for preparation of ultrasmall Pt-Sn species for efficient dehydrogenation of propane to propene. J. Catal. 2023, 418, 290–299.

[61]

Deng, L. D.; Liu, X. W.; Wu, Z. K.; Xu, J.; Zhou, Z. J.; Xu, M. H. Effects of synthesis procedures on Pt-Sn alloy formation and their catalytic activity for propane dehydrogenation. Catal. Lett. 2023, 153, 3665–3677.

[62]

Gao, X. Q.; Yao, Z. H.; Li, W. C.; Deng, G. M.; He, L.; Si, R.; Wang, J. G.; Lu, A. H. Calcium-modified PtSn/Al2O3 catalyst for propane dehydrogenation with high activity and stability. ChemCatChem 2023, 15, e202201691.

[63]

Sun, Y. Q.; Feng, B. H.; Lian, Q.; Xie, C. S.; Xiong, J.; Song, W. Y.; Liu, J.; Wei, Y. C. Ordered hierarchical porous structure of PtSn/3DOMM-Al2O3 catalyst for promoting propane non-oxidative dehydrogenation. Nanomaterials (Basel) 2023, 13, 728.

[64]

Choi, Y. S.; Kim, J. R.; Hwang, J. H.; Roh, H. S.; Koh, H. L. Effect of reduction temperature on the activity of Pt-Sn/Al2O3 catalysts for propane dehydrogenation. Catal. Today 2023, 411–412, 113957

[65]

Zhang, T. T.; Pei, C. L.; Sun, G. D.; Chen, S.; Zhao, Z. J.; Sun, S. J.; Lu, Z. P.; Xu, Y. Y.; Gong, J. L. Synergistic mechanism of platinum-GaO x catalysts for propane dehydrogenation. Angew. Chem., Int. Ed. 2022, 61, e202201453.

[66]

Lian, Z.; Si, C. W.; Jan, F.; Zhi, S. K.; Li, B. Coke deposition on Pt-based catalysts in propane direct dehydrogenation: Kinetics, suppression, and elimination. ACS Catal. 2021, 11, 9279–9292.

File
6574_ESM.pdf (6.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2023
Revised: 18 February 2024
Accepted: 19 February 2024
Published: 12 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by Sichuan Science and Technology Program (Nos. 2020YFH0176 and 2020SZYZF0002), the Fundamental Research Funds for the Central Universities (No. 20826041E4280), and the Sichuan International and the Scientific and technological innovation cooperation project (No. 2022YFH0039). We thank the Analytical & Testing Center of Sichuan University for the TEM and XPS measurements. The authors also would like to thank Dr. Wenwu Wang and Xiaoshan Zhang from Central Lab of College of Materials Science and Engineering at Sichuan University for the XRD and TGA measurement.

Return