AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hierarchical cobalt-molybdenum layered double hydroxide arrays power efficient oxygen evolution reaction

Xinyi Zhu1,2,§Jiahui Lyu1,3,§Shanshan Wang1Xingchuan Li1Xiaoyu Wei1Cheng Chen1,2( )Wanida Koo-amornpattana4Francis Verpoort1Jinsong Wu1,3Zongkui Kou1,2( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand

§ Xinyi Zhu and Jiahui Lyu contributed equally to this work.

Show Author Information

Graphical Abstract

Hierarchical cobalt-molybdenum layered double hydroxide arrays were designed and fabricated for the efficient oxygen evolution reaction.

Abstract

Transition metal-based layered double hydroxides (LDHs) have been capable of working efficiently as catalysts in the basic oxygen evolution reaction (OER) for sustaining hydrogen production of alkaline water electrolysis. Nevertheless, exploring new LDH-based electrocatalysts featuring both remarkable activity and good stability is still in high demand, which is pivotal for comprehensive understanding and impressive improvement of the sluggish OER kinetics. Here, a series of bimetallic (Co and Mo) LDH arrays were designed and fabricated via a facile and controlled strategy by incorporating a Mo source into presynthesized Co-based metal-organic framework (MOF) arrays on carbon cloth (CC), named as ZIF-67/CC arrays. We found that tuning the Mo content resulted in gradual differences in the structural properties, surface morphology, and chemical states of the resulting catalysts, namely CoMox-LDH/CC (x representing the added weight of the Mo source). Gratifyingly, the best-performing CoMo0.20-LDH/CC electrocatalyst demonstrates a low overpotential of only 226 mV and high stability at a current density of 10 mA·cm−2, which is superior to most LDH-based OER catalysts reported previously. Furthermore, it only required 1.611 V voltage to drive the overall water splitting device at the current density of 10 mA·cm−2. The present study represents a significant advancement in the development and applications of new OER catalysts.

Electronic Supplementary Material

Download File(s)
12274_2024_6529_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[2]

Jamesh, M. I. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J. Power Sources 2016, 333, 213–236.

[3]

Jamesh, M. I.; Sun, X. M. Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting—A review. J. Power Sources 2018, 400, 31–68.

[4]

Chen, Z. L.; Qing, H. L.; Zhou, K.; Sun, D. L.; Wu, R. B. Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. Prog. Mater. Sci. 2020, 108, 100618.

[5]

Armaroli, N.; Balzani, V. Solar electricity and solar fuels: Status and perspectives in the context of the energy transition. Chem. —Eur. J. 2016, 22, 32–57.

[6]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[7]

Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

[8]

Zhang, K. X.; Zou, R. Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129.

[9]

Reddy, M. S. B.; Aich, S. Recent progress in surface and heterointerface engineering of 2D MXenes for gas sensing applications. Coord. Chem. Rev. 2024, 500, 215542.

[10]

Wang, W.; Liu, Y. C.; Li, J.; Luo, J.; Fu, L.; Chen, S. L. NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. J. Mater. Chem. A 2018, 6, 14299–14306.

[11]

Xiao, G. L.; Chen, W. B.; Cai, Y. M.; Zhang, S. F.; Wang, D.; Cai, D. D. Facile synthesis of sulfate-intercalated CoFe LDH nanosheets derived from two-dimensional ZIF-9(III) for promoted oxygen evolution reaction. Catalysts 2022, 12, 688.

[12]

Yan, X. S.; Wang, Z. L.; Bao, J.; Song, Y. H.; She, X. J.; Yuan, J. J.; Hua, Y. J.; Lv, G. A.; Li, H. M.; Xu, H. CoMo layered double hydroxide equipped with carbon nanotubes for electrocatalytic oxygen evolution reaction. Nanotechnology 2023, 34, 065401.

[13]

Ye, C.; Zhang, L. C.; Yue, L. C.; Deng, B.; Cao, Y.; Liu, Q.; Luo, Y. L.; Lu, S. Y.; Zheng, B. Z.; Sun, X. P. A NiCo LDH nanosheet array on graphite felt: An efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 2021, 8, 3162–3166.

[14]

Zhang, M. L.; Wang, J. L.; Ma, L. F.; Gong, Y. Q. Spontaneous synthesis of silver nanoparticles on cobalt-molybdenum layer double hydroxide nanocages for improved oxygen evolution reaction. J. Colloid Interface Sci. 2022, 628, 299–307.

[15]

Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; García de Arquer, F. P.; Dinh, C. T.; Li, J.; Wang, Z. Y.; Zheng, X. L.; Zhang, L. S. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 2020, 3, 985–992.

[16]

Dai, R. R.; Dai, C. Y.; Hou, S. J.; He, Q. J.; Liu, B. G.; Huang, M. H.; Jiang, H. Q.; Li, M. H.; Pan, L. K.; Guo, Z. et al. Opportunities and challenges of hydrotalcite-related electrocatalysts for seawater splitting: A systematic perspective from materials synthesis, characterization and application. J. Mater. Chem. A 2023, 11, 20383–20407.

[17]

Gebreslase, G. A.; Martínez-Huerta, M. V.; Lázaro, M. J. Recent progress on bimetallic NiCo and CoFe based electrocatalysts for alkaline oxygen evolution reaction: A review. J. Energy Chem. 2022, 67, 101–137.

[18]

Hameed, A.; Batool, M.; Liu, Z. Y.; Nadeem, M. A.; Jin, R. C. Layered double hydroxide-derived nanomaterials for efficient electrocatalytic water splitting: Recent progress and future perspective. ACS Energy Lett. 2022, 7, 3311–3328.

[19]

Kulkarni, R.; Lingamdinne, L. P.; Karri, R. R.; Momin, Z. H.; Koduru, J. R.; Chang, Y. Y. Catalytic efficiency of LDH@carbonaceous hybrid nanocomposites towards water splitting mechanism: Impact of plasma and its significance on HER and OER activity. Coord. Chem. Rev. 2023, 497, 215460.

[20]

Sahoo, D. P.; Das, K. K.; Mansingh, S.; Sultana, S.; Parida, K. Recent progress in first row transition metal layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord. Chem. Rev. 2022, 469, 214666.

[21]

Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.

[22]

Zhou, D. J.; Li, P. S.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W. F.; Sun, X. M.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817.

[23]

Yu, J.; Yu, F.; Yuen, M. F.; Wang, C. D. Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 9389–9430.

[24]

Hu, J.; Tang, X. M.; Dai, Q.; Liu, Z. Q.; Zhang, H. M.; Zheng, A. M.; Yuan, Z. Z.; Li, X. F. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device. Nat. Commun. 2021, 12, 3409.

[25]

Mehdi, M.; An, B. S.; Kim, H.; Lee, S.; Lee, C.; Seo, M.; Noh, M. W.; Cho, W. C.; Kim, C. H.; Choi, C. H. et al. Rational design of a stable Fe-rich Ni-Fe layered double hydroxide for the industrially relevant dynamic operation of alkaline water electrolyzers. Adv. Energy Mater. 2023, 13, 2204403.

[26]

Kou, Z. K.; Yu, Y.; Liu, X. M.; Gao, X. R.; Zheng, L. R.; Zou, H. Y.; Pang, Y. J.; Wang, Z. Y.; Pan, Z. H.; He, J. Q. et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation. ACS Catal. 2020, 10, 4411–4419.

[27]

Liu, B. R.; Zhang, N.; Ma, M. M. Cobalt-based nanosheet arrays as efficient electrocatalysts for overall water splitting. J. Mater. Chem. A 2017, 5, 17640–17646.

[28]

Mishra, I. K.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Dahal, K.; Bao, J. M.; Chen, S.; Ren, Z. F. Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy Environ. Sci. 2018, 11, 2246–2252.

[29]

Wang, C. H.; Li, Y. H.; Gu, C. D.; Zhang, L. J.; Wang, X. L.; Tu, J. P. Active Co@CoO core/shell nanowire arrays as efficient electrocatalysts for hydrogen evolution reaction. Chem. Eng. J. 2022, 429, 132226.

[30]

Mishra, I. K.; Zhou, H. Q.; Sun, J. Y.; Dahal, K.; Ren, Z. S.; He, R.; Chen, S.; Ren, Z. F. Highly efficient hydrogen evolution by self-standing nickel phosphide-based hybrid nanosheet arrays electrocatalyst. Mater. Today Phys. 2018, 4, 1–6.

[31]

Cheng, W. R.; Zhang, H.; Zhao, X.; Su, H.; Tang, F. M.; Tian, J.; Liu, Q. H. A metal-vacancy-solid-solution NiAlP nanowall array bifunctional electrocatalyst for exceptional all-pH overall water splitting. J. Mater. Chem. A 2018, 6, 9420–9427.

[32]

Hao, S.; Yang, Y. C. Water splitting in near-neutral media: Using an Mn-Co-based nanowire array as a complementary electrocatalyst. J. Mater. Chem. A 2017, 5, 12091–12095.

[33]

Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345, 1593–1596.

[34]

Wang, Y. J.; Cao, Q. H.; Guan, C.; Cheng, C. W. Recent advances on self-supported arrayed bifunctional oxygen electrocatalysts for flexible solid-state Zn-air batteries. Small 2020, 16, 2002902.

[35]

Wang, Y.; Sun, Y.; Yan, F.; Zhu, C. L.; Gao, P.; Zhang, X. T.; Chen, Y. J. Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2018, 6, 8479–8487.

[36]

Eda, K.; Uno, Y.; Nagai, N.; Sotani, N.; Whittingham, M. S. Crystal structure of cobalt molybdate hydrate CoMoO4· nH2O. J. Solid State Chem. 2005, 178, 2791–2797.

[37]

Li, X.; Li, Z. H.; Lu, L.; Huang, L. M.; Xiang, L.; Shen, J.; Liu, S. Y.; Xiao, D. R. The solvent induced inter-dimensional phase transformations of cobalt zeolitic-imidazolate frameworks. Chem. —Eur. J. 2017, 23, 10638–10643.

[38]

Xu, F. G.; Wang, L. W.; Wu, M. J.; Ma, G. R. Vertical growth of leaf-like Co-metal organic framework on carbon fiber cloth as integrated electrode for sensitive detection of dopamine and uric acid. Sens. Actuators B Chem. 2023, 386, 133734.

[39]

Zhang, J. C.; Zhang, T. C.; Yu, D. B.; Xiao, K. S.; Hong, Y. Transition from ZIF-L-Co to ZIF-67: A new insight into the structural evolution of zeolitic imidazolate frameworks (ZIFs) in aqueous systems. CrystEngComm 2015, 17, 8212–8215.

[40]

Chen, T.; Li, S. Z.; Wen, J.; Gui, P. B.; Guo, Y. X.; Guan, C.; Liu, J. P.; Fang, G. J. Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution. Small 2018, 14, 1700979.

[41]

Fang, L.; Li, W. X.; Guan, Y. X.; Feng, Y. Y.; Zhang, H. J.; Wang, S. L.; Wang, Y. Tuning unique peapod-like Co(S x Se1− x )2 nanoparticles for efficient overall water splitting. Adv. Funct. Mater. 2017, 27, 1701008.

[42]

Lin, J. H.; Wang, H. H.; Yan, Y. T.; Zheng, X. H.; Jia, H. N.; Qi, J. L.; Cao, J.; Tu, J. C.; Fei, W. D.; Feng, J. C. Core-branched CoSe2/Ni0.85Se nanotube arrays on Ni foam with remarkable electrochemical performance for hybrid supercapacitors. J. Mater. Chem. A 2018, 6, 19151–19158.

[43]

Wang, X. Q.; Zheng, B. J.; Yu, B.; Wang, B.; Hou, W. Q.; Zhang, W. L.; Chen, Y. F. In situ synthesis of hierarchical MoSe2-CoSe2 nanotubes as an efficient electrocatalyst for the hydrogen evolution reaction in both acidic and alkaline media. J. Mater. Chem. A 2018, 6, 7842–7850.

[44]

Mele, A.; Dickinson, P.; Mattei, M. A holistic physics-based observer for online flooding and ECSA loss detection in FCEV. Int. J. Hydrog. Energy 2024, 55, 1393–1404.

[45]

Paul, R.; Zhai, Q. F.; Roy, A. K.; Dai, L. M. Charge transfer of carbon nanomaterials for efficient metal-free electrocatalysis. Interdiscip. Mater. 2022, 1, 28–50.

[46]

Jiang, J.; Liu, J. P. Iron anode-based aqueous electrochemical energy storage devices: Recent advances and future perspectives. Interdiscip. Mater. 2022, 1, 116–139.

Nano Research
Pages 5080-5086
Cite this article:
Zhu X, Lyu J, Wang S, et al. Hierarchical cobalt-molybdenum layered double hydroxide arrays power efficient oxygen evolution reaction. Nano Research, 2024, 17(6): 5080-5086. https://doi.org/10.1007/s12274-024-6529-1
Topics:

653

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 29 December 2023
Revised: 29 January 2024
Accepted: 30 January 2024
Published: 14 March 2024
© Tsinghua University Press 2024
Return