Journal Home > Volume 17 , Issue 6

The emergence of novel self-powered humidity sensors has attracted considerable attention in the fields of smart electronic devices and personal healthcare. Herein, self-powered humidity sensors have been fabricated using a moisture-driven energy generation (MEG) device based on asymmetric tubular graphitic carbon nitride (g-CN) films prepared on anodized aluminum (AAO) template. At a relative humidity (RH) of 96%, the MEG device can provide an open-circuit voltage of 0.47 V and a short-circuit current of 3.51 μA, with a maximum output power of 0.08 μW. With inherent self-powered ability and humidity response via current variation, an extraordinary response of 1.78 × 106% (41%–96% RH) can be gained from the MEG device. The possible power generation mechanism is that g-CN/AAO heterostructure can form ion gradient and diffusion under the action of moisture to convert chemical potential into electrical potential, evoking a connaturally sensitive response to humidity. Self-powered respiration monitoring device based on the sensor is designed to monitor human movement (sitting, warming up, and running) and sleep status (normal, snoring, and apnea), maintaining excellent stability during cumulative 12-h respiration monitoring. This self-powered humidity sensing technology has promising potential for extensive integration into smart electronic and round-the-clock health monitoring devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Sensitive humidity sensor based on moisture-driven energy generation

Show Author's information Qingchao Ni1Qing Lou1( )Chenglong Shen1Guangsong Zheng1Runwei Song1Jingnan Hao1Jialu Liu1Jinyang Zhu2( )Jinhao Zang1Lin Dong1Chong-Xin Shan1( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, and School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

The emergence of novel self-powered humidity sensors has attracted considerable attention in the fields of smart electronic devices and personal healthcare. Herein, self-powered humidity sensors have been fabricated using a moisture-driven energy generation (MEG) device based on asymmetric tubular graphitic carbon nitride (g-CN) films prepared on anodized aluminum (AAO) template. At a relative humidity (RH) of 96%, the MEG device can provide an open-circuit voltage of 0.47 V and a short-circuit current of 3.51 μA, with a maximum output power of 0.08 μW. With inherent self-powered ability and humidity response via current variation, an extraordinary response of 1.78 × 106% (41%–96% RH) can be gained from the MEG device. The possible power generation mechanism is that g-CN/AAO heterostructure can form ion gradient and diffusion under the action of moisture to convert chemical potential into electrical potential, evoking a connaturally sensitive response to humidity. Self-powered respiration monitoring device based on the sensor is designed to monitor human movement (sitting, warming up, and running) and sleep status (normal, snoring, and apnea), maintaining excellent stability during cumulative 12-h respiration monitoring. This self-powered humidity sensing technology has promising potential for extensive integration into smart electronic and round-the-clock health monitoring devices.

Keywords: graphitic carbon nitride, humidity sensor, moisture-driven energy generation, respiration monitoring

References(48)

[1]

Liu, J.; Wang, H. Y.; Liu, T.; Wu, Q. N.; Ding, Y. H.; Ou, R. X.; Guo, C. G.; Liu, Z. Z.; Wang, Q. W. Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome. Adv. Funct. Mater. 2022, 32, 2204686.

[2]

Huang, Y. F.; Yang, F.; Liu, S. H.; Wang, R. G.; Guo, J. H.; Ma, X. Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets. Research 2021, 2021, 9847285.

[3]

Chen, S. C.; Qian, G. C.; Ghanem, B.; Wang, Y. Q.; Shu, Z.; Zhao, X. F.; Yang, L.; Liao, X. Q.; Zheng, Y. J. Quantitative and real-time evaluation of human respiration signals with a shape-conformal wireless sensing system. Adv. Sci. 2022, 9, 2203460.

[4]

Liang, Y. N.; Ding, Q. L.; Wang, H.; Wu, Z. X.; Li, J. Y.; Li, Z. Y.; Tao, K.; Gui, X. C.; Wu, J. Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 2022, 14, 183.

[5]

Liu, H.; Qin, J. X.; Yang, X. G.; Lv, C. F.; Huang, W. T.; Li, F. K.; Zhang, C.; Wu, Y. R.; Dong, L.; Shan, C. X. Highly sensitive humidity sensors based on hexagonal boron nitride nanosheets for contactless sensing. Nano Res. 2023, 16, 10279–10286.

[6]

Cai, J. G.; Lv, C.; Aoyagi, E.; Ogawa, S.; Watanabe, A. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 2018, 10, 23987–23996.

[7]

Su, Y. J.; Chen, G. R.; Chen, C. X.; Gong, Q. C.; Xie, G. Z.; Yao, M. L.; Tai, H. L.; Jiang, Y. D.; Chen, J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 2021, 33, 2101262.

[8]

Lan, L. Y.; Le, X. H.; Dong, H. Y.; Xie, J.; Ying, Y. B.; Ping, J. F. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 2020, 165, 112360.

[9]

Zhang, D. Z.; Tong, J.; Xia, B. K. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B Chem. 2014, 197, 66–72.

[10]

Zhang, D. Z.; Xu, Z. Y.; Yang, Z. M.; Song, X. S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251.

[11]

Shooshtari, L.; Rafiefard, N.; Barzegar, M.; Fardindoost, S.; Irajizad, A.; Mohammadpour, R. Self-powered humidity sensors based on SnS2 nanosheets. ACS Appl. Nano Mater. 2022, 5, 17123–17132.

[12]

Hu, L. H.; Zhong, T. Y.; Long, Z. H.; Liang, S.; Xing, L. L.; Xue, X. Y. A self-powered sound-driven humidity sensor for wearable intelligent dehydration monitoring system. Nanotechnology 2023, 34, 195501.

[13]

Su, Y. J.; Liu, Y. L.; Li, W. X.; Xiao, X.; Chen, C. X.; Lu, H. J.; Yuan, Z.; Tai, H. L.; Jiang, Y. D.; Zou, J. et al. Sensing–transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater. Horiz. 2023, 10, 842–851.

[14]

Zou, Y.; Gai, Y. S.; Tan, P. C.; Jiang, D. J.; Qu, X. C.; Xue, J. T.; Ouyang, H.; Shi, B. J.; Li, L. L.; Luo, D. et al. Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam. Res. 2022, 2, 619–628.

[15]

Yin, J.; Li, X. M.; Yu, J.; Zhang, Z. H.; Zhou, J. X.; Guo, W. L. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378–383.

[16]

Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

[17]

Yang, S. S.; Su, Y. D.; Xu, Y.; Wu, Q.; Zhang, Y. B.; Raschke, M. B.; Ren, M. X.; Chen, Y.; Wang, J. L.; Guo, W. L. et al. Mechanism of electric power generation from ionic droplet motion on polymer supported graphene. J. Am. Chem. Soc. 2018, 140, 13746–13752.

[18]

Fei, W. W.; Shen, C.; Zhang, S. Y.; Chen, H. Y.; Li, L. X.; Guo, W. L. Waving potential at volt level by a pair of graphene sheets. Nano Energy 2019, 60, 656–660.

[19]

Jiao, S. P.; Li, Y.; Li, J. X.; Abrha, H.; Liu, M.; Cui, J. R.; Wang, J.; Dai, Y. X.; Liu, X. H. Graphene oxide as a versatile platform for emerging hydrovoltaic technology. J. Mater. Chem. A 2022, 10, 18451–18469.

[20]

Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

[21]

Cheng, H. H.; Huang, Y. X.; Zhao, F.; Yang, C.; Zhang, P. P.; Jiang, L.; Shi, G. Q.; Qu, L. T. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 2018, 11, 2839–2845.

[22]

Wang, H. Y.; Sun, Y. L.; He, T. C.; Huang, Y. X.; Cheng, H. H.; Li, C.; Xie, D.; Yang, P. F.; Zhang, Y. F.; Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 2021, 16, 811–819.

[23]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[24]

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

[25]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329.

[26]

Arazoe, H.; Miyajima, D.; Akaike, K.; Araoka, F.; Sato, E.; Hikima, T.; Kawamoto, M.; Aida, T. An autonomous actuator driven by fluctuations in ambient humidity. Nat. Mater. 2016, 15, 1084–1089.

[27]

Cai, Z.; Song, Z. P.; Guo, L. Q. Thermo- and photoresponsive actuators with freestanding carbon nitride films. ACS Appl. Mater. Interfaces 2019, 11, 12770–12776.

[28]

Xiao, K.; Chen, L.; Chen, R. T.; Heil, T.; Lemus, S. D. C.; Fan, F. T.; Wen, L. P.; Jiang, L.; Antonietti, M. Publisher correction: Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 2019, 10, 843.

[29]

Xiao, K.; Giusto, P.; Wen, L. P.; Jiang, L.; Antonietti, M. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes. Angew. Chem., Int. Ed. 2018, 57, 10123–10126.

[30]

Zhang, Y.; Yang, T. T.; Shang, K. D.; Guo, F. M.; Shang, Y. Y.; Chang, S. L.; Cui, L. C.; Lu, X. L.; Jiang, Z. B.; Zhou, J. et al. Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode. Nat. Commun. 2022, 13, 3484.

[31]

Rossi, M. P.; Gogotsi, Y.; Kornev, K. G. Deformation of carbon nanotubes by exposure to water vapor. Langmuir 2009, 25, 2804–2810.

[32]

Ou, H. H.; Lin, L. H.; Zheng, Y.; Yang, P. J.; Fang, Y. X.; Wang, X. C. Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 2017, 29, 1700008.

[33]

Liu, Z. Y.; Wang, C. F.; Zhu, Z. L.; Lou, Q.; Shen, C. L.; Chen, Y. C.; Sun, J. L.; Ye, Y. L.; Zang, J. H.; Dong, L. et al. Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter 2021, 4, 1625–1638.

[34]

Wang, Y. H.; Wang, K. P.; Dai, F. X.; Zhang, K.; Tang, H. F.; Wang, L.; Xing, J. A warm-white light-emitting diode based on single-component emitter aromatic carbon nitride. Nat. Commun. 2022, 13, 6495.

[35]

Qin, J. X.; Yang, X. G.; Shen, C. L.; Chang, Y.; Deng, Y.; Zhang, Z. F.; Liu, H.; Lv, C. F.; Li, Y. Z.; Zhang, C. et al. Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy 2022, 101, 107549.

[36]

Su, Y. J.; Xie, G. Z.; Wang, S.; Tai, H. L.; Zhang, Q. P.; Du, H. F.; Zhang, H. L.; Du, X. S.; Jiang, Y. D. Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sens. Actuators B Chem. 2017, 251, 144–152.

[37]

Park, S. Y.; Kim, Y. H.; Lee, S. Y.; Sohn, W.; Lee, J. E.; Kim, D. H.; Shim, Y. S.; Kwon, K. C.; Choi, K. S.; Yoo, H. J. et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 2018, 6, 5016–5024.

[38]

Li, B. L.; Tian, Q.; Su, H. X.; Wang, X. W.; Wang, T. E.; Zhang, D. Z. High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection. Sens. Actuators B: Chem. 2019, 299, 126973.

[39]

Zhang, Z. Y.; Huang, J. D.; Yuan, Q.; Dong, B. Intercalated graphitic carbon nitride: A fascinating two-dimensional nanomaterial for an ultra-sensitive humidity nanosensor. Nanoscale 2014, 6, 9250–9256.

[40]

Yu, S. G.; Chen, C.; Zhang, H. Y.; Zhang, J.; Liu, J. Design of high sensitivity graphite carbon nitride/zinc oxide humidity sensor for breath detection. Sens. Actuators B: Chem. 2021, 332, 129536.

[41]

Qin, J. X.; Yang, X. G.; Lv, C. F.; Li, Y. Z.; Chen, X. X.; Zhang, Z. F.; Zang, J. H.; Yang, X.; Liu, K. K.; Dong, L. et al. Humidity sensors realized via negative photoconductivity effect in nanodiamonds. J. Phys. Chem. Lett. 2021, 12, 4079–4084.

[42]
Xu, T.; Ding, X. T.; Cheng, H. H.; Han, G. Y.; Qu, L. T. Moisture-enabled electricity from hygroscopic materials: A new type of clean energy. Adv. Mater., in press, https://doi.org/10.1002/adma.202209661.
[43]

Dai, X. H.; Liu, H.; Du, W. X.; Su, J.; Kong, L. S.; Ni, S. Q.; Zhan, J. H. Biocompatible carbon nitride quantum dots nanozymes with high nitrogen vacancies enhance peroxidase-like activity for broad-spectrum antibacterial. Nano Res. 2023, 16, 7237–7247.

[44]

Wu, Y. Y.; Fu, C. F.; Huang, Q.; Zhang, P. P.; Cui, P.; Ran, J.; Yang, J. L.; Xu, T. W. 2D Heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano 2021, 15, 7586–7595

[45]

Guan, P. Y.; Zhu, R. B.; Hu, G. Y.; Patterson, R.; Chen, F. D.; Liu, C.; Zhang, S.; Feng, Z. H.; Jiang, Y.; Wan, T. et al. Recent development of moisture-enabled-electric nanogenerators. Small 2022, 18, 2204603.

[46]

Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554.

[47]

Fan, K.; Liu, X. K.; Liu, Y.; Li, Y.; Liu, X. Y.; Feng, W.; Wang, X. Spontaneous power generation from broad-humidity atmospheres through heterostructured F/O-bonded graphene monoliths. Nano Energy 2022, 91, 106605.

[48]

Sun, J. Y.; Xiu, K. H.; Wang, Z. Y.; Hu, N.; Zhao, L. B.; Zhu, H.; Kong, F. Z.; Xiao, J. L.; Cheng, L. J.; Bi, X. Y. Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome. Nano Energy 2023, 108, 108215.

File
12274_2024_6499_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 November 2023
Revised: 08 January 2024
Accepted: 17 January 2024
Published: 07 March 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

We gratefully acknowledge the support of this research by the National Natural Science Foundation of China (Nos. 12261141661, 12074348, U2004168, U21A2070, 62027816, and 12004345) and the Natural Science Foundation of Henan Province (No. 212300410078).

Return