Journal Home > Volume 17 , Issue 6

Nanostructure photodetectors, as the core component of optoelectronic devices, are mainly focused on the precise preparation of mixed-component nano-heterostructures and the realization of zero power consumption devices. Herein, we successfully fabricated n-GaN/p-ZnTe core/shell nanopillar array and realized self-power ultraviolet/violet photodetection. The radial heterojunction nanodevice reveals high light-dark current ratio of 104 at 0 V bias, indicating effective carriers’ separation. And more, by integrating plasmonic effect, the responsivity and detectivity of the Au nanoparticles decorated device are increased from 3.85 to 148.83 mA/W and 4.45×1011 to 2.33 × 1012 Jones under 325 nm UV light irradiation. While the rise and the fall time are decreased 1.3 times and 6.8 times under 520 nm visible light irradiation at 0 V bias. The high photocurrent gain is derived from that the oscillating high-energy hot electrons in Au nanoparticles spontaneously inject into the ZnTe conduction band to involve the photodetection process. This work presents an effective route to prepare high-performance self-power photodetector and provides a promising blueprint to realize different functional photoelectronic devices based on core/shell nanostructure.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Plasmon-enhanced self-powered GaN/ZnTe core/shell nanopillar array photodetector

Show Author's information Jianqi Dong1Dongqi Zhang2Yi Ma1Daotong You3Jinping Chen1Bin Liu2Xingfu Wang4Zengliang Shi1( )Chunxiang Xu1( )
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou 510631, China

Abstract

Nanostructure photodetectors, as the core component of optoelectronic devices, are mainly focused on the precise preparation of mixed-component nano-heterostructures and the realization of zero power consumption devices. Herein, we successfully fabricated n-GaN/p-ZnTe core/shell nanopillar array and realized self-power ultraviolet/violet photodetection. The radial heterojunction nanodevice reveals high light-dark current ratio of 104 at 0 V bias, indicating effective carriers’ separation. And more, by integrating plasmonic effect, the responsivity and detectivity of the Au nanoparticles decorated device are increased from 3.85 to 148.83 mA/W and 4.45×1011 to 2.33 × 1012 Jones under 325 nm UV light irradiation. While the rise and the fall time are decreased 1.3 times and 6.8 times under 520 nm visible light irradiation at 0 V bias. The high photocurrent gain is derived from that the oscillating high-energy hot electrons in Au nanoparticles spontaneously inject into the ZnTe conduction band to involve the photodetection process. This work presents an effective route to prepare high-performance self-power photodetector and provides a promising blueprint to realize different functional photoelectronic devices based on core/shell nanostructure.

Keywords: plasmonic effect, GaN/ZnTe core/shell, nanopillar array, ultraviolet/visible photodetector, self-power

References(42)

[1]

Bhatnagar, P.; Patel, M.; Lee, K.; Kim, J. Self-powered transparent photodetector for subretinal visual functions of wide-field-of-view and broadband perception. InfoMat 2023, 5, e12408.

[2]

Wang, L.; Ji, X. H.; Zhang, Q. Y. Synthesis of continuous MoS2: Er films and their enhanced NIR photoresponse for photo communication. J. Mater. Chem. C 2023, 11, 10483–10491.

[3]

Massin, L.; Nourrit, V.; Lahuec, C.; Seguin, F.; Adam, L.; Daniel, E.; De Bougrenet De La Tocnaye, J. L. Development of a new scleral contact lens with encapsulated photodetectors for eye tracking. Opt. Express 2020, 28, 28635–28647.

[4]

Shultz, A.; Liu, B.; Gong, M. G.; Alamri, M.; Walsh, M.; Schmitz, R. C.; Wu, J. Z. Development of broadband PbS quantum dot/graphene photodetector arrays with high-speed readout circuits for flexible imagers. ACS Appl. Nano Mater. 2022, 5, 16896–16905.

[5]

Đorđević, N.; Schwanninger, R.; Yarema, M.; Koepfli, S.; Yarema, O.; Salamin, Y.; Lassaline, N.; Cheng, B. J.; Yazdani, N.; Dorodnyy, A. et al. Metasurface colloidal quantum dot photodetectors. ACS Photonics 2022, 9, 482–492.

[6]

Yang, C.; Wang, Z. J.; He, G.; Zhang, H. Z.; Liao, C. Pb2BiS2I3 nanowires for use in photodetectors. ACS Appl. Nano Mater. 2022, 5, 16033–16038.

[7]

Gao, Q. Y.; Jin, Z. H.; Qu, L. H.; Shao, Z. T.; Liu, X.; Zhang, Y. X.; Fu, Z. D.; Huang, Y. W.; Wang, L. L.; Feng, W. CuO Nanosheets for use in photoelectrochemical photodetectors. ACS Appl. Nano Mater. 2022, 6, 784–791.

[8]

You, D. T.; Xu, C. X.; Zhao, J.; Qin, F. F.; Zhang, W.; Wang, R.; Shi, Z. L.; Cui, Q. N. Single-crystal ZnO/AlN core/shell nanowires for ultraviolet emission and dual-color ultraviolet photodetection. Adv. Opt. Mater. 2019, 7, 1801522.

[9]

Butanovs, E.; Vlassov, S.; Kuzmin, A.; Piskunov, S.; Butikova, J.; Polyakov, B. Fast-response single-nanowire photodetector based on ZnO/WS2 core/shell heterostructures. ACS Appl. Mater. Interfaces 2018, 10, 13869–13876.

[10]

Wu, Z. H.; Tai, G. A.; Liu, R. S.; Hou, C.; Shao, W.; Liang, X. C.; Wu, Z. T. Van Der Waals epitaxial growth of borophene on a mica substrate toward a high-performance photodetector. ACS Appl. Mater. Interfaces 2021, 13, 31808–31815.

[11]

Liu, Y.; Tai, G. A.; Hou, C.; Wu, Z. T.; Liang, X. C. Chemical vapor deposition growth of few-layer β12-Borophane on copper foils toward broadband photodetection. ACS Appl. Mater. Interfaces 2023, 15, 14566–14574.

[12]

Wu, Z. H.; Chen, S. F.; Wu, Z. T.; Liu, Y.; Shao, W.; Liang, X. C.; Hou, C.; Tai, G. A.Epitaxial growth of borophene on graphene surface towards efficient and broadband photodetector. Nano Res., 2024, 17, 3053–3060.

[13]

Ruan, W.; Meng, X. Q. Observation of anomalous negative photoconductivity in Ga2O3 nanowires: Implications for broadening the spectral response of photodetectors. ACS Appl. Nano Mater. 2023, 6, 1019–1026.

[14]

Tai, G. A.; Liu, B.; Hou, C.; Wu, Z. T.; Liang, X. C. Ultraviolet photodetector based on p-borophene/n-ZnO heterojunction. Nanotechnology 2021, 32, 505606.

[15]

Liang, X. C.; Hou, C.; Wu, Z. H.; Wu, Z. T.; Tai, G. A. Multilayer α′-4H-borophene growth on gallium arsenide towards high-performance near-infrared photodetector. Nanotechnology 2023, 34, 205701.

[16]

Dong, J. Q.; Wang, B. Y.; Zou, X. S.; Zhao, W.; He, C. G.; He, L. F.; Wang, Q.; Chen, Z. T.; Li, S. T.; Zhang, K. et al. Centimeter-long III-nitride nanowires and continuous-wave pumped lasing enabled by graphically epitaxial lift-off. Nano Energy 2020, 78, 105404.

[17]

Goswami, L.; Aggarwal, N.; Vashishtha, P.; Jain, S. K.; Nirantar, S.; Ahmed, J.; Khan, M. A. M.; Pandey, R.; Gupta, G. Fabrication of GaN Nano-towers based self-powered UV photodetector. Sci. Rep. 2021, 11, 10859.

[18]

Kang, J. H.; Johar, M. A.; Alshehri, B.; Dogheche, E.; Ryu, S. W. Facile growth of density- and diameter-controlled GaN nanobridges and their photodetector application. J. Mater. Chem. C 2017, 5, 11879–11884.

[19]

Da Silva, B. C.; Biegański, A.; Durand, C.; Momtaz, Z. S.; Harikumar, A.; Cooper, D.; Monroy, E.; Den Hertog, M. I. High-aspect-ratio GaN p-i-n nanowires for linear UV photodetectors. ACS Appl. Nano Mater. 2023, 6, 12784–12791.

[20]

Liu, C.; Li, X. D.; Hu, T. G.; Zhu, W. K.; Yan, F. G.; Wu, T. S.; Wang, K. Y.; Zhao, L. X. A nanopillar-modified high-sensitivity asymmetric graphene-GaN photodetector. Nanoscale 2021, 13, 17512–17520.

[21]

You, D. T.; Xu, C. X.; Zhang, W.; Zhao, J.; Qin, F. F.; Shi, Z. L. Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays. Nano Energy 2019, 62, 310–318.

[22]

Koç, F.; Kavruk, A. E.; Sahin, M. Advanced tunability of optical properties of CdS/ZnSe/ZnTe/CdSe multi-shell quantum dot by the band edge engineering. Phys. E Low-dimens. Syst. Nanostruct. 2023, 145, 115479.

[23]

Wasly, H. S.; Abd El-sadek, M. S.; Karczewski, G.; Yahia, I. S. Design and microelectronic analysis of Au/ZnTe:I/CdTe:I/GaAs/In photosensor for optoelectronic applications using MBE technology. J. Mater. Sci. Mater. Electron. 2019, 30, 4936–4942.

[24]

Shang, Q. Y.; Zhang, S.; Liu, Z.; Chen, J.; Yang, P. F.; Li, C.; Li, W.; Zhang, Y. F.; Xiong, Q. H.; Liu, X. F. et al. Surface Plasmon enhanced strong exciton-photon coupling in hybrid inorganic-organic perovskite nanowires. Nano Lett. 2018, 18, 3335–3343.

[25]

Liu, Y. W.; Chen, Q. L.; Cullen, D. A.; Xie, Z. X.; Lian, T. Q. Efficient hot electron transfer from small Au nanoparticles. Nano Lett. 2020, 20, 4322–4329.

[26]

Zhang, C.; Huang, B. L.; Li, H. Y.; Chen, H.; Yu, T.; Zhang, B. C.; Wang, S. J.; Liu, C. X.; Luo, Y.; Maier, S. A. et al. Plasmonic nanoneedle arrays with enhanced hot electron photodetection for near-IR imaging. Adv. Funct. Mater. 2023, 33, 2304368.

[27]

Liu, B. W.; Xu, X.; Han, M.; Cheng, H.; Chen, J. M.; Sun, X. G.; Zhang, Q. L.; Duan, X. D.; Hu, J. W. Schottky junction made from a nanoporous Au and TiO2 film for plasmonic photodetectors. ACS Appl. Nano Mater. 2023, 6, 4619–4625.

[28]

Dong, J. Q.; Wang, R.; Yang, Y. Q.; Li, Z. X.; Chen, J. P.; Wang, X. F.; Zhang, K.; Xu, C. X. Ultraviolet lasing using individual GaN nanobelts. ACS Appl. Nano Mater. 2023, 6, 2063–2070.

[29]

Su, X. L.; Li, Y. F.; Zhang, M. Y.; Hu, P.; Guo, M. F.; Li, A. X.; Zhang, Y.; Li, Q.; Yun, F. GaN ultraviolet photodetector with petal-like β-Ga2O3 microcrystalline layer. AIP Adv. 2020, 10, 125107.

[30]

Mishra, M.; Gundimeda, A.; Krishna, S.; Aggarwal, N.; Goswami, L.; Gahtori, B.; Bhattacharyya, B.; Husale, S.; Gupta, G. Surface-engineered nanostructure-based efficient nonpolar GaN ultraviolet photodetectors. ACS Omega 2018, 3, 2304–2311.

[31]

You, S. D.; Wu, Z.; Niu, L. J.; Chu, X. H.; She, Y. H.; Liu, Z. J.; Cai, Y. T.; Liu, H. W.; Zhang, L. J.; Zhang, K. N. et al. 2D ultrathin p-type ZnTe with high environmental stability. Adv. Electron. Mater. 2022, 8, 2101146.

[32]

Ilanchezhiyan, P.; Kumar, G. M.; Xiao, F.; Madhankumar, A.; Siva, C.; Yuldashev, S. U.; Cho, H. D.; Kang, T. W. Interfacial charge transfer in ZnTe/ZnO nano arrayed heterostructures and their improved photoelectronic properties. Sol. Energy Mater. Sol. Cell 2018, 183, 73–81.

[33]

Hu, L. F.; Yan, J.; Liao, M. Y.; Xiang, H. J.; Gong, X. G.; Zhang, L. D.; Fang, X. S. An optimized ultraviolet–A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Adv. Mater. 2012, 24, 2305–2309.

[34]

Pasupuleti, K. S.; Reddeppa, M.; Park, B. G.; Peta, K. R.; Oh, J. E.; Kim, S. G.; Kim, M. D. Ag nanowire-plasmonic-assisted charge separation in hybrid heterojunctions of Ppy-PEDOT:PSS/GaN nanorods for enhanced UV photodetection. ACS Appl. Mater. Interfaces 2020, 12, 54181–54190.

[35]

Yu, J. G.; Yu, M.; Wang, Z.; Yuan, L.; Huang, Y.; Zhang, L. G.; Zhang, Y. M.; Jia, R. X. Improved photoresponse performance of self-powered β-Ga2O3/NiO heterojunction UV photodetector by surface plasmonic effect of Pt nanoparticles. IEEE Trans. Electron Dev. 2020, 67, 3199–3204.

[36]

Qin, F. F.; Chang, N.; Xu, C. X.; Zhu, Q. X.; Wei, M.; Zhu, Z.; Chen, F.; Lu, J. F. Underlying mechanism of blue emission enhancement in Au decorated p-GaN film. RSC Adv. 2017, 7, 15071–15076.

[37]

Chen, J. P.; Zhang, Z.; Ma, Y.; Feng, J. Y.; Xie, X. Y.; Wang, X. X.; Jian, A. Q.; Li, Y. Z.; Li, Z. X.; Guo, H. et al. High-performance self-powered ultraviolet to near-infrared photodetector based on WS2/InSe van der Waals heterostructure. Nano Res. 2023, 16, 7851–7857.

[38]

Tai, G. A.; Zeng, T.; Yu, J.; Zhou, J. X.; You, Y. C.; Wang, X. F.; Wu, H. R.; Sun, X.; Hu, T. S.; Guo, W. L. Fast and large-area growth of uniform MoS2 monolayers on molybdenum foils. Nanoscale 2016, 8, 2234–2241.

[39]

Wu, Z. H.; Tai, G. A.; Wang, X. F.; Hu, T. S.; Wang, R.; Guo, W. L. Large-area synthesis and photoelectric properties of few-layer MoSe2 on molybdenum foils. Nanotechnology 2018, 29, 125605.

[40]

Wang, Y. H.; Li, H. R.; Cao, J.; Shen, J. Y.; Zhang, Q. Y.; Yang, Y. T.; Dong, Z. G.; Zhou, T. H.; Zhang, Y.; Tang, W. H. et al. Ultrahigh gain solar blind avalanche photodetector using an amorphous Ga2O3-based heterojunction. ACS Nano 2021, 15, 16654–16663.

[41]

Zhang, Q. Y.; Li, N.; Zhang, T.; Dong, D. M.; Yang, Y. T.; Wang, Y. H.; Dong, Z. G.; Shen, J. Y.; Zhou, T. H.; Liang, Y. L. et al. Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering. Nat. Commun. 2023, 14, 418.

[42]

Dong, J. Q.; Wang, Z. J.; Wang, X. F.; Wang, Z. L. Temperature dependence of the pyro-phototronic effect in self-powered p-Si/n-ZnO nanowires heterojuncted ultraviolet sensors. Nano Today 2019, 29, 100798.

File
12274_2024_6477_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 October 2023
Revised: 29 December 2023
Accepted: 07 January 2024
Published: 02 March 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62075041, 62375049, and 62335003) and the Basic Research Program of Jiangsu Province (No. BK20222007).

Return