Journal Home > Volume 17 , Issue 6

The application of light-weight current collectors is preferred because of the increased energy density of the batteries. Bearing it in mind, the cathode is designed with self-made paperlike memberane as current collector coupled with another interlayer to enable the high-energy-density lithium-sulfur batteries. Via a facile and green step-by-step methodology, the hybrid membrane is finalized successfully, consisting of reduced graphene oxide sheets covering paper-derived carbon (GPC) bearing Fe@Fe2O3 and Fe1−xS@Fe2O3 core–shell nanoparticles (FeFeO/FeSFeO@GPC). The film works as the current collector and interlayer simultaneously considering the porous and conductive features. As demonstrated by the electrochemical testing, the FeFeO/FeSFeO@GPC hybrid cell exhibits attractive cycling stability and superior rate capability. The cell configuration and structural/composition merits of FeFeO/FeSFeO@GPC film facilitate the faster reaction kinetics, conducive to the improvement of capacity retention. In view of the effective cathode design, the areal sulfur loading is increased to 10.46 mg·cm−2 and a reversible capacity of 6.67 mAh·cm−2 can be retained after 60 cycles at 0.1 C.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational cathode configuration with bilayer membranes to engineer current-collector-free high-areal-sulfur lithium-sulfur batteries

Show Author's information Jianmei Han1( )Hua Zhang2Peng Wang2Ning Song2Xuguang An3Baojuan Xi2Shenglin Xiong2( )
College of Chemistry and Chemical Engineering, Taishan University, Tai’an 271021, China
Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
School of Mechanical Engineering, Chengdu University, Chengdu 610106, China

Abstract

The application of light-weight current collectors is preferred because of the increased energy density of the batteries. Bearing it in mind, the cathode is designed with self-made paperlike memberane as current collector coupled with another interlayer to enable the high-energy-density lithium-sulfur batteries. Via a facile and green step-by-step methodology, the hybrid membrane is finalized successfully, consisting of reduced graphene oxide sheets covering paper-derived carbon (GPC) bearing Fe@Fe2O3 and Fe1−xS@Fe2O3 core–shell nanoparticles (FeFeO/FeSFeO@GPC). The film works as the current collector and interlayer simultaneously considering the porous and conductive features. As demonstrated by the electrochemical testing, the FeFeO/FeSFeO@GPC hybrid cell exhibits attractive cycling stability and superior rate capability. The cell configuration and structural/composition merits of FeFeO/FeSFeO@GPC film facilitate the faster reaction kinetics, conducive to the improvement of capacity retention. In view of the effective cathode design, the areal sulfur loading is increased to 10.46 mg·cm−2 and a reversible capacity of 6.67 mAh·cm−2 can be retained after 60 cycles at 0.1 C.

Keywords: lithium-sulfur batteries, core–shell, light-weight self-made current collector, high-areal-sulfur

References(45)

[1]

Liu, Y. T.; Liu, S.; Li, G. R.; Gao, X. P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 2021, 33, 2003955.

[2]

Pan, Z. Y.; Brett, D. J. L.; He, G. J.; Parkin, I. P. Progress and perspectives of organosulfur for lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2103483.

[3]

Su, H.; Lu, L. Q.; Yang, M. Z.; Cai, F. P.; Liu, W. L.; Li, M.; Hu, X.; Ren, M. M.; Zhang, X.; Zhou, Z. Decorating CoSe2 on N-doped carbon nanotubes as catalysts and efficient polysulfides traps for Li-S batteries. Chem. Eng. J. 2022, 429, 132167.

[4]

Tsao, Y.; Gong, H. X.; Chen, S. C.; Chen, G.; Liu, Y. Z.; Gao, T. Z.; Cui, Y.; Bao, Z. N. A nickel-decorated carbon flower/sulfur cathode for lean-electrolyte lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2101449.

[5]

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

[6]

Li, Q.; Guo, J. N.; Zhao, J.; Wang, C. C.; Yan, F. Porous nitrogen-doped carbon nanofibers assembled with nickel nanoparticles for lithium-sulfur batteries. Nanoscale 2019, 11, 647–655.

[7]

Chadha, U.; Bhardwaj, P.; Padmanaban, S.; Suneel, R. M.; Milton, K.; Subair, N.; Pandey, A.; Khanna, M.; Srivastava, D. Review—Contemporary progresses in carbon-based electrode material in Li-S batteries. J. Electrochem. Soc. 2022, 169, 020530.

[8]

He, Z. K.; Wan, T. T.; Luo, Y. H.; Liu, G. H.; Wu, L. L.; Li, F.; Zhang, Z. S.; Li, G. R.; Zhang, Y. G. Three-dimensional structural confinement design of conductive metal oxide for efficient sulfur host in lithium-sulfur batteries. Chem. Eng. J. 2022, 448, 137656.

[9]

Hou, Q.; Wang, K. D.; Zheng, W. J.; Li, X. C.; Yu, M.; Jiang, H. L.; Dai, Y.; Chu, F. Y.; Jiang, X. B.; Zhu, D. et al. Eliminating bandgap between Cu-CeO2− x heterointerface enabling fast electron transfer and redox reaction in Li-S batteries. Energy Storage Mater. 2023, 63, 102983.

[10]

Lei, J.; Liu, T.; Chen, J. J.; Zheng, M. S.; Zhang, Q.; Mao, B. W.; Dong, Q. F. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries. Chem 2020, 6, 2533–2557.

[11]

Zhen, M. M.; Jiang, K. L.; Guo, S. Q.; Shen, B. X.; Liu, H. L. Suitable lithium polysulfides diffusion and adsorption on CNTs@TiO2-bronze nanosheets surface for high-performance lithium-sulfur batteries. Nano Res. 2022, 15, 933–941.

[12]

Sun, T. T.; Zhao, X. M.; Li, B.; Shu, H. B.; Luo, L. P.; Xia, W. L.; Chen, M. F.; Zeng, P.; Yang, X. K.; Gao, P. et al. NiMoO4 nanosheets anchored on N-S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li-S battery. Adv. Funct. Mater. 2021, 31, 2101285.

[13]

Liu, Y. P.; Ma, S. Y.; Liu, L. F.; Koch, J.; Rosebrock, M.; Li, T. R.; Bettels, F.; He, T.; Pfnür, H.; Bigall, N. C. et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries. Adv. Funct. Mater. 2020, 30, 2002462.

[14]

Zeng, P.; Liu, C.; Zhao, X. F.; Yuan, C.; Chen, Y. G.; Lin, H. P.; Zhang, L. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries. ACS Nano 2020, 14, 11558–11569.

[15]

Zhao, Q.; Zhu, Q. Z.; Liu, Y.; Xu, B. Status and prospects of MXene-based lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100457.

[16]

Miao, Z. Y.; Li, Y. P.; Xiao, X. P.; Sun, Q. Z.; He, B.; Chen, X.; Liao, Y. Q.; Zhang, Y.; Yuan, L. X.; Yan, Z. J.; Li, Z.; Huang, Y. H. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium-sulfur batteries. Energy Environ. Sci. 2022, 15, 2029–2038.

[17]

Yang, H. J.; Qiao, Y.; Chang, Z.; He, P.; Zhou, H. S. Designing cation-solvent fully coordinated electrolyte for high-energy-density lithium-sulfur full cell based on solid–solid conversion. Angew. Chem., Int. Ed. 2021, 60, 17726–17734.

[18]

Sun, Q.; Xi, B. J.; Li, J. Y.; Mao, H. Z.; Ma, X. J.; Liang, J. W.; Feng, J. K.; Xiong, S. L. Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800595.

[19]

Qiao, Z. S.; Zhang, Y. G.; Meng, Z. H.; Xie, Q. S.; Lin, L.; Zheng, H. F.; Sa, B.; Lin, J.; Wang, L. S.; Peng, D. L. Anchoring polysulfides and accelerating redox reaction enabled by Fe-based compounds in lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100970.

[20]

Li, J. H.; Li, F. Y.; Pan, J. J.; Pan, J. D.; Liao, J. Y.; Li, H.; Dong, H. F.; Shi, K. X.; Liu, Q. B. Hollow Co3S4 nanocubes interconnected with carbon nanotubes as nanoreactors to accelerate polysulfide conversion for high-performance lithium-sulfur batteries. Ind. Eng. Chem. Res. 2023, 62, 4364–4372.

[21]

Li, B.; Wang, P.; Xi, B. J.; Song, N.; An, X. G.; Chen, W. H.; Feng, J. K.; Xiong, S. L. In-situ embedding CoTe catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Res. 2022, 15, 8972–8982

[22]

Hong, X. D.; Wang, Y.; Liu, Y.; Fu, J. W.; Liang, J.; Dou, S. X. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries. J. Energy Chem. 2020, 42, 144–168.

[23]

Song, N.; Xi, B. J.; Wang, P.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.

[24]

Yuan, J.; Xi, B. J.; Wang, P.; Zhang, Z. C. Y.; Song, N.; An, X. G.; Liu, J.; Feng, J. K.; Xiong, S. L. Multifunctional atomic molybdenum on graphene with distinctive coordination to solve Li and S electrochemistry. Small 2022, 18, 2203947.

[25]

Wang, P.; Zhang, Z. C. Y.; Song, N.; An, X. G.; Liu, J.; Feng, J. K.; Xi, B. J.; Xiong, S. L. WP nanocrystals on N,P dual-doped carbon nanosheets with deeply analyzed catalytic mechanisms for lithium-sulfur batteries. CCS Chem. 2023, 5, 397–411.

[26]

Wang, Y.; Wang, P.; Yuan, J.; Song, N.; An, X. G.; Ma, X. J.; Feng, J. K.; Xi, B. J.; Xiong, S. L. Binary sulfiphilic nickel boride on boron-doped graphene with beneficial interfacial charge for accelerated Li-S dynamics. Small 2023, 19, 2208281.

[27]

Zhou, X.; Liu, T. T.; Zhao, G. F.; Yang, X. F.; Guo, H. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li-S batteries. Energy Storage Mater. 2021, 40, 139–149.

[28]

Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res. 2023, 16, 4438–4467.

[29]

Tao, S.; Zhang, G. K.; Qian, B.; Yang, J.; Chu, S. Q.; Sun, C. C.; Wu, D. J.; Chu, W. S.; Song, L. Spectroscopically unraveling high-valence Ni-Fe catalytic synergism in NiSe2/FeSe2 heterostructure. Appl. Catal. B: Environ. 2023, 330, 122600.

[30]

Zhang, L.; Liu, Y. C.; Zhao, Z. D.; Jiang, P. L.; Zhang, T.; Li, M. X.; Pan, S. X.; Tang, T. Y.; Wu, T. Q.; Liu, P. Y. et al. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 2020, 14, 8495–8507.

[31]

Ji, L.; Wang, X.; Jia, Y. F.; Hu, Q. L.; Duan, L. M.; Geng, Z. B.; Niu, Z. Q.; Li, W. S.; Liu, J. H.; Zhang, Y. G. et al. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry. Adv. Funct. Mater. 2020, 30, 1910533.

[32]

Wang, M. L.; Song, Y. Z.; Sun, Z. T.; Shao, Y. L.; Wei, C. H.; Xia, Z.; Tian, Z. N.; Liu, Z. F.; Sun, J. Y. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium-sulfur batteries. ACS Nano 2019, 13, 13235–13243.

[33]

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Amal, R.; Wang, S. G.; Cheng, H. M.; Li, F. Polysulfide immobilization and conversion on a conductive polar MoC@MoO x material for lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 56–61.

[34]

Zhang, C. Y.; Lu, Z. W.; Wang, Y. H.; Dai, Z.; Zhao, H.; Sun, G. Z.; Lan, W.; Pan, X. J.; Zhou, J. Y.; Xie, E. Q. Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for lithium-sulfur batteries. Chem. Eng. J. 2020, 392, 123734.

[35]

Shen, N.; Sun, H. X.; Li, B. Y.; Xi, B. J.; An, X. G.; Li, J. F.; Xiong, S. L. Dual-functional hosts for polysulfides conversion and lithium plating/stripping towards lithium-sulfur full cells. Chem.—Eur. J. 2023, 29, e202203031.

[36]

Sun, X. X.; Liu, S. K.; Sun, W. W.; Zheng, C. M. Emerging multifunctional iron-based nanomaterials as polysulfides adsorbent and sulfur species catalyst for lithium-sulfur batteries—A mini-review. Chin. Chem. Lett. 2023, 34, 107501.

[37]

Qiao, Z. S.; Zhou, F.; Zhang, Q. F.; Pei, F.; Zheng, H. F.; Xu, W. J.; Liu, P. F.; Ma, Y. T.; Xie, Q. S.; Wang, L. S. et al. Chemisorption and electrocatalytic effect from Co x Sn y alloy for high performance lithium sulfur batteries. Energy Storage Mater. 2019, 23, 62–71.

[38]

Hou, Y. L.; Zhang, J.; Qin, T.; Zeng, R.; Guan, H. B.; Wang, S. G.; Zhao, D. L. Spindle-like Fe7S8/C anchored on S-doped graphene nanosheets as a superior long-life and high-rate anode for lithium-ion batteries. Appl. Surf. Sci. 2022, 599, 154042.

[39]

Huang, W.; Li, S.; Cao, X. Y.; Hou, C. Y.; Zhang, Z.; Feng, J. K.; Ci, L.; Si, P. C.; Chi, Q. J. Metal-organic framework derived iron sulfide-carbon core–shell nanorods as a conversion-type battery material. ACS Sustain. Chem. Eng. 2017, 5, 5039–5048.

[40]

Shangguan, E. B.; Guo, L. T.; Li, F.; Wang, Q.; Li, J.; Li, Q. M.; Chang, Z. R.; Yuan, X. Z. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries. J. Power Sources 2016, 327, 187–195.

[41]

Liu, X. W.; Li, H. R.; Gao, S. S.; Bai, Z. Y.; Tian, J. Y. Peroxymonosulfate activation by different iron sulfides for bisphenol—A degradation: Performance and mechanism. Sep. Purif. Technol. 2022, 289, 120751.

[42]

Zhang, X. M.; Li, G. R.; Zhang, Y. G.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy 2021, 86, 106094.

[43]

Gao, R. H.; Zhang, M. T.; Han, Z. Y.; Xiao, X.; Wu, X. R.; Piao, Z. H.; Lao, Z. J.; Nie, L.; Wang, S. G.; Zhou, G. M. Unraveling the coupling effect between cathode and anode toward practical lithium-sulfur batteries. Adv. Mater. 2024, 36, 2303610.

[44]
Lao, Z. J.; Han, Z. Y.; Ma, J. B.; Zhang, M. T.; Wu, X. R.; Jia, Y. Y.; Gao, R. H.; Zhu, Y. F.; Xiao, X.; Yu, K. et al. Band structure engineering and orbital orientation control constructing dual active sites for efficient sulfur redox reaction. Adv. Mater., in press, https://doi.org/10.1002/adma.202309024.
[45]

Han, Z. Y.; Gao, R. H.; Wang, T. S.; Tao, S. Y.; Jia, Y. Y.; Lao, Z. J.; Zhang, M. T.; Zhou, J. Q.; Li, C.; Piao, Z. H. et al. Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics. Nat. Catal. 2023, 6, 1073–1086.

File
12274_2024_6472_MOESM1_ESM.pdf (349.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 December 2023
Revised: 02 January 2024
Accepted: 03 January 2024
Published: 01 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial supports provided by the National Natural Science Foundation of China (No. U1764258), the Taishan Scholar Project Foundation of Shandong Province (No. ts20190908), and the Natural Science Foundation of Shandong Province (No. ZR2021ZD05).

Return