AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Revealing the origin of the photo-instability to improve the performance of PbS quantum dot solar

Chunyan Wu1,2,3,§Jinpeng Yang1,2,3,4,§Shuo Ding1,2,3,5Tengzuo Huang1,2,3,4Tao Sun4( )Lei Qian1,2,3Chaoyu Xiang1,2,3( )
Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo 315336, China
Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
International Joint Research Center of China for Optoelectronic and Energy Materials, Energy Research Institute, Yunnan University, Kunming 650091, China
Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China

§ Chunyan Wu and Jinpeng Yang contributed equally to this work.

Show Author Information

Graphical Abstract

The reason why the as-prepared lead sulfide quantum dots (PbS QDs) solar cell is unstable under initial light illumination has been revealed, which comes from the reaction between the 1,2-ethanedithiol (EDT) and PbX2. To overcome this issue, an interfacial layer was introduced to block the reaction.

Abstract

Stability under light is critical for lead sulfide quantum dots (PbS QDs) in solar cell applications. To improve the stability of PbS QDs solar cells, the influence of the light illumination on the performance of the as-prepared PbS QDs solar cells was carefully investigated. Combined with X-ray and ultraviolet photoelectron spectroscopies, it was revealed that the 1,2-ethanedithiol (EDT) ligands of the hole transport p-type PbS QDs reacted with the ligands of the PbS QDs active layer under light illumination. The reaction not only undermines the n-type characteristics of the active layer, but also increases the number of defects, leading to a serious deterioration in device performance. An interface layer was introduced to block the EDT penetration to avoid this issue, significantly improving the stability of the device under light irradiation. Moreover, the separation of carriers was also enhanced due to the better matching the energy level of the interface layer. The device with an interface layer yielded a power conversion efficiency of 12.55% and sustained to a long time light illumination.

Electronic Supplementary Material

Download File(s)
6462_ESM.pdf (1.2 MB)

References

[1]

Hines, M. A.; Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844–1849.

[2]

Weidman, M. C.; Beck, M. E.; Hoffman, R. S.; Prins, F.; Tisdale, W. A. Monodisperse, air-stable PbS nanocrystal via precursor stoichiometry control. ACS Nano 2014, 8, 6363–6371.

[3]

Lu, H. P.; Carroll, G. M.; Neale, N. R.; Beard, M. C. Infrared quantum dots: Progress, challenges, and opportunities. ACS Nano 2019, 13, 939–953.

[4]

Liu, Y.; Shi, G. Z.; Liu, Z. K.; Ma, W. L. Toward printable solar cells based on PbX colloidal quantum dot inks. Nanoscale Horiz. 2021, 6, 8–23.

[5]

Liu, J. W.; Xian, K. H.; Ye, L.; Zhou, Z. H. Open-circuit voltage loss in lead chalcogenide quantum dot solar cells. Adv. Mater. 2021, 33, 2008115.

[6]

Wang, C.; Wang, Y. L.; Jia, Y. W.; Wang, H.; Li, X. F.; Liu, S.; Liu, X. L.; Zhu, H. B.; Wang, H. Y.; Liu, Y. C. et al. Precursor chemistry enables the surface ligand control of PbS quantum dots for efficient photovoltaics. Adv. Sci. 2023, 10, 2204655

[7]

Liu, Y.; Wu, H.; Shi, G. Z.; Li, Y. S.; Gao, Y. Y.; Fang, S. W.; Tang, H. D.; Chen, W.; Ma, T. S.; Khan, I. et al. Merging passivation in synthesis enabling the lowest open-circuit voltage loss for PbS quantum dot solar cells. Adv. Mater. 2023, 35, 2207293.

[8]

Sun, B.; Vafaie, M.; Levina, L.; Wei, M. Y.; Dong, Y. T.; Gao, Y. J.; Kung, H. T.; Biondi, M.; Proppe, A. H.; Chen, B. et al. Ligand-assisted reconstruction of colloidal quantum dots decreases trap state density. Nano Lett. 2020, 20, 3694–3702.

[9]

Chen, J. X.; Zheng, S. Y.; Jia, D. L.; Liu, W. L.; Andruszkiewicz, A.; Qin, C. C.; Yu, M.; Liu, J. H.; Johansson, E. M. J.; Zhang, X. L. Regulating thiol ligands of p-type colloidal quantum dots for efficient infrared solar cells. ACS Energy Lett. 2021, 6, 1970–1979.

[10]

Yang, X. K.; Yang, J.; Ullah, M. I.; Xia, Y.; Liang, G. J.; Wang, S.; Zhang, J. B.; Hsu, H. Y.; Song, H. S.; Tang, J. Enhanced passivation and carrier collection in ink-processed PbS quantum dot solar cells via a supplementary ligand strategy. ACS Appl. Mater. Interfaces 2020, 12, 42217–42225.

[11]

Meng, X.; Chen, Y. F.; Yang, F.; Zhang, J. Q.; Shi, G. Z.; Zhang, Y. N.; Tang, H. D.; Chen, W.; Liu, Y.; Yuan, L. et al. Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells. Nano Res. 2022, 15, 6121–6127.

[12]

Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

[13]

Kim, H. I.; Baek, S. W.; Cheon, H. J.; Ryu, S. U.; Lee, S.; Choi, M. J.; Choi, K.; Biondi, M.; Hoogland, S.; de Arquer, F. P. G. et al. A tuned alternating D-A copolymer hole-transport layer enables colloidal quantum dot solar cells with superior fill factor and efficiency. Adv. Mater. 2020, 32, 2004985.

[14]

Ding, C.; Wang, D. D.; Liu, D.; Li, H.; Li, Y. S.; Hayase, S.; Sogabe, T.; Masuda, T.; Zhou, Y.; Yao, Y. F. et al. Over 15% efficiency PbS quantum-dot solar cells by synergistic effects of three interface engineering: Reducing nonradiative recombination and balancing charge carrier extraction. Adv. Energy Mater. 2022, 12, 2201676.

[15]

Wu, C. Y.; Ding, S.; Zhang, L. J.; Huang, F. C.; Qiu, G. H.; Yang, J. P.; Yu, F. Y.; Sun, T.; Qian, L.; Xiang, C. Y. Enhancing the absorbance and carrier extraction of lead sulfide quantum dot solar cells by the bilayer ZnO with a self-assembly optical structure. Sol. RRL 2023, 7, 2300019.

[16]

Baek, S. W.; Jun, S. H.; Kim, B.; Proppe, A. H.; Ouellette, O.; Voznyy, O.; Kim, C.; Kim, J.; Walters, G.; Song, J. H. et al. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nat. Energy 2019, 4, 969–976.

[17]

Cao, Y. M.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 2016, 1, 16035.

[18]

Albaladejo-Siguan, M.; Baird, E. C.; Becker-Koch, D.; Li, Y. X.; Rogach, A. L.; Vaynzof, Y. Stability of quantum dot solar cells: A matter of (life)time. Adv. Energy Mater. 2021, 11, 2003457.

[19]

Asil, D.; Walker, B. J.; Ehrler, B.; Vaynzof, Y.; Sepe, A.; Bayliss, S.; Sadhanala, A.; Chow, P. C. Y.; Hopkinson, P. E.; Steiner, U. et al. Role of PbSe structural stabilization in photovoltaic cells. Adv. Funct. Mater. 2015, 25, 928–935.

[20]

Salazar-Rios, J. M.; Sukharevska, N.; Speirs, M. J.; Jung, S.; Dirin, D.; Dragoman, R. M.; Allard, S.; Kovalenko, M. V.; Scherf, U.; Loi, M. A. Enhancing quantum dot solar cells stability with a semiconducting single-walled carbon nanotubes interlayer below the top anode. Adv. Mat. Interfaces 2018, 5, 1801155.

[21]

Chen, W.; Guo, R. J.; Tang, H. D.; Wienhold, K. S.; Li, N.; Jiang, Z. Y.; Tang, J.; Jiang, X. Y.; Kreuzer, L. P.; Liu, H. C. et al. Operando structure degradation study of PbS quantum dot solar cells. Energy Environ. Sci. 2021, 14, 3420–3429

[22]

Zhou, W. R.; Li, D.; Xiao, Z. G.; Wen, Z. L.; Zhang, M. M.; Hu, W. P.; Wu, X. J.; Wang, M. T.; Zhang, W. H.; Lu, Y. L. et al. Zwitterion coordination induced highly orientational order of CH3NH3PbI3 perovskite film delivers a high open circuit voltage exceeding 1.2 V. Adv. Funct. Mater. 2019, 29, 1901026.

[23]

Hu, W. P.; Zhou, W. R.; Lei, X. Y.; Zhou, P. C.; Zhang, M. M.; Chen, T.; Zeng, H. L.; Zhu, J.; Dai, S. Y.; Yang, S. H. et al. Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv. Mater. 2019, 31, 1806095.

[24]

Chen, Z. H.; Zhang, Z. L.; Yang, J. F.; Chen, W. J.; Teh, Z. L.; Wang, D.; Yuan, L.; Zhang, J. B.; Stride, J. A.; Conibeer, G. J. et al. Improving carrier extraction in a PbSe quantum dot solar cell by introducing a solution-processed antimony-doped SnO2 buffer layer. J. Mater. Chem. C 2018, 6, 9861–9866.

[25]

Wu, C. Y.; Jiang, C. H.; Wang, X. M.; Ding, H. H.; Ju, H. X.; Zhang, L. J.; Chen, T.; Zhu, C. F. Interfacial engineering by indium-doped CdS for high efficiency solution processed Sb2(S1− x Se x )3 solar cells. ACS Appl. Mater. Interfaces 2019, 11, 3207–3213.

Nano Research
Pages 10644-10648
Cite this article:
Wu C, Yang J, Ding S, et al. Revealing the origin of the photo-instability to improve the performance of PbS quantum dot solar. Nano Research, 2024, 17(12): 10644-10648. https://doi.org/10.1007/s12274-024-6462-3
Topics:

692

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 19 November 2023
Revised: 18 December 2023
Accepted: 29 December 2023
Published: 24 January 2024
© Tsinghua University Press 2024
Return