Journal Home > Online First

Li-CO2 batteries are among the most intriguing techniques for balancing the carbon cycle, but are challenged by the annoyed thermodynamic barrier of the Li2CO3 decomposition reaction. Herein, we demonstrate the electrocatalytic performances of two-dimensional (2D) CoAl-layer double hydroxide (LDH) nanosheets can be significantly improved by trans-dimensional crosslinking with three-dimensional (3D) multilevel nanoporous (MP)-RuCoAl alloy (MP-RuCoAl alloy⊥CoAl-LDH). The MP-RuCoAl alloy⊥CoAl-LDH with multiscale pore channels and abundant nano-heterointerface is directly prepared by controllable etching Al from a Ru-Co-Al master alloy along with simultaneous partial oxidization of Al and Co atoms. The MP-RuCoAl is composed of various intermetallic compounds and Ru with abundant grain boundaries, and forms numerous heterointerface with 2D CoAl-LDH nanosheets. The multiscale porous metallic network benefits mass and electron transportation as well as discharge product storage and enables a rich multiphase reaction interface. In situ differential electrochemical mass spectrometry shows that the mass-to-charge ratio in the charging process is ~ 0.733 which is consistent with the theoretical value of 3/4, stating that the reversible co-decomposition of Li2CO3 and C can be achieved with the MP-RuCoAl alloy⊥CoAl-LDH. The Ketjen black (KB)/MP-RuCoAl⊥CoAl-LDH battery demonstrates a high cyclability for over 2270 h (227 cycles) with a lower voltage gap stabilized at ~ 1.3 V at 200 mA·g−1. Our findings here provide useful guidelines for developing high efficiency transition metal based electrocatalysts by coupling with conductive porous substrate for impelling the development of practical Li-CO2 battery systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Alloy/layer double hydroxide interphasic synergy via nano-heterointerfacing for highly reversible CO2 redox reaction in Li-CO2 batteries

Show Author's information Tianzhen Jian1Wenqing Ma1,3,4( )Jiagang Hou2Jianping Ma4Xianhong Li4Haiyang Gao4Caixia Xu1( )Hong Liu1,3
Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
Kyiv College at Qilu University of Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Shandong Sacred Sun Power Sources Co., Ltd., Qufu 273100, China

Abstract

Li-CO2 batteries are among the most intriguing techniques for balancing the carbon cycle, but are challenged by the annoyed thermodynamic barrier of the Li2CO3 decomposition reaction. Herein, we demonstrate the electrocatalytic performances of two-dimensional (2D) CoAl-layer double hydroxide (LDH) nanosheets can be significantly improved by trans-dimensional crosslinking with three-dimensional (3D) multilevel nanoporous (MP)-RuCoAl alloy (MP-RuCoAl alloy⊥CoAl-LDH). The MP-RuCoAl alloy⊥CoAl-LDH with multiscale pore channels and abundant nano-heterointerface is directly prepared by controllable etching Al from a Ru-Co-Al master alloy along with simultaneous partial oxidization of Al and Co atoms. The MP-RuCoAl is composed of various intermetallic compounds and Ru with abundant grain boundaries, and forms numerous heterointerface with 2D CoAl-LDH nanosheets. The multiscale porous metallic network benefits mass and electron transportation as well as discharge product storage and enables a rich multiphase reaction interface. In situ differential electrochemical mass spectrometry shows that the mass-to-charge ratio in the charging process is ~ 0.733 which is consistent with the theoretical value of 3/4, stating that the reversible co-decomposition of Li2CO3 and C can be achieved with the MP-RuCoAl alloy⊥CoAl-LDH. The Ketjen black (KB)/MP-RuCoAl⊥CoAl-LDH battery demonstrates a high cyclability for over 2270 h (227 cycles) with a lower voltage gap stabilized at ~ 1.3 V at 200 mA·g−1. Our findings here provide useful guidelines for developing high efficiency transition metal based electrocatalysts by coupling with conductive porous substrate for impelling the development of practical Li-CO2 battery systems.

Keywords: interface, dealloying, nanoporous, heterojunction, Li-CO2 battery

References(47)

[1]

Sarkar, A.; Dharmaraj, V. R.; Yi, C. H.; Iputera, K.; Huang, S. Y.; Chung, R. J.; Hu, S. F.; Liu, R. S. Recent advances in rechargeable metal-CO2 batteries with nonaqueous electrolytes. Chem. Rev. 2023, 123, 9497–9564.

[2]

Ezeigwe, E. R.; Dong, L.; Manjunatha, R.; Zuo, Y. Z.; Deng, S. Q.; Tan, M.; Yan, W.; Zhang, J. J.; Wilkinson, D. P. A review of lithium-O2/CO2 and lithium-CO2 batteries: Advanced electrodes/materials/electrolytes and functional mechanisms. Nano Energy 2022, 95, 106964.

[3]

Jia, P.; Yu, M. Q.; Zhang, X. D.; Yang, T. T.; Zhu, D. D.; Shen, T. D.; Zhang, L. Q.; Tang, Y. F.; Huang, J. Y. In-situ imaging the electrochemical reactions of Li-CO2 nanobatteries at high temperatures in an aberration corrected environmental transmission electron microscope. Nano Res. 2022, 15, 542–550

[4]

Mu, X. W.; Pan, H.; He, P.; Zhou, H. S. Li-CO2 and Na-CO2 batteries: Toward greener and sustainable electrical energy storage. Adv. Mater. 2020, 32, 1903790.

[5]

Xie, J. F.; Zhou, Z.; Wang, Y. B. Metal-CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Adv. Funct. Mater. 2020, 30, 1908285.

[6]

Jiao, Y. N.; Qin, J.; Sari, H. M. K.; Li, D. J.; Li, X. F.; Sun, X. L. Recent progress and prospects of Li-CO2 batteries: Mechanisms, catalysts and electrolytes. Energy Storage Mater. 2021, 34, 148–170.

[7]

Lv, H. Z.; Huang, X. L.; Zhu, X. Q.; Wang, B. Metal-related electrocatalysts for Li-CO2 batteries: An overview of the fundamentals to explore future-oriented strategies. J. Mater. Chem. A 2022, 10, 25406–25430.

[8]

Hu, A. J.; Shu, C. Z.; Xu, C. X.; Liang, R. X.; Li, J. B.; Zheng, R. X.; Li, M. L.; Long, J. P. Design strategies toward catalytic materials and cathode structures for emerging Li-CO2 batteries. J. Mater. Chem. A 2019, 7, 21605–21633.

[9]

Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

[10]

Xu, Y. Y.; Jiang, C.; Gong, H.; Xue, H. R.; Gao, B.; Li, P.; Chang, K.; Huang, X. L.; Wang, T.; He, J. P. Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries. Nano Res. 2022, 15, 4100–4107.

[11]

Jian, T. Z.; Ma, W. Q.; Xu, C. X.; Liu, H.; Wang, J. Intermetallic-driven highly reversible electrocatalysis in Li-CO2 battery over nanoporous Ni3Al/Ni heterostructure. eScience 2023, 3, 100114.

[12]

Xu, Y. Y.; Gong, H.; Ren, H.; Fan, X. L.; Li, P.; Zhang, T. F.; Chang, K.; Wang, T.; He, J. P. Highly efficient Cu-porphyrin-based metal-organic framework nanosheet as cathode for high-rate Li-CO2 battery. Small 2022, 18, 2203917.

[13]

Sun, Z. M.; Wang, D.; Lin, L.; Liu, Y. H.; Yuan, M. W.; Nan, C. Y.; Li, H. F.; Sun, G. B.; Yang, X. J. Ultrathin hexagonal boron nitride as a van der Waals’ force initiator activated graphene for engineering efficient non-metal electrocatalysts of Li-CO2 battery. Nano Res. 2021, 15, 1171–1177.

[14]

Xu, Y. Y.; Xia, Y. J.; Xue, H. R.; Gong, H.; Chang, K.; He, J. P.; Wang, T.; Ma, R. Z. Aprotic lithium-carbon dioxide batteries: Reaction mecanism and catalyst design. Chem. Rec. 2022, 22, e202200109.

[15]

Masnica, J. P.; Sibt-e-Hassan, S.; Potgieter-Vermaak, S.; Regmi, Y. N.; King, L. A.; Tosheva, L. ZIF-8-derived Fe-C catalysts: Relationship between structure and catalytic activity toward the oxygen reduction reaction. Green Carbon 2023, 1, 160–169.

[16]

Wang, X. F.; Liu, H. X.; Wang, Q.; Huo, J. H.; Ge, W. Y.; Duan, X. B.; Guo, S. W. Microbial-derived functional carbon decorated hollow NiCo-LDHs nanoflowers as a highly efficient catalyst for Li-CO2 battery. Appl. Surf. Sci. 2021, 540, 148351.

[17]

Jin, Y. C.; Chen, F. Y.; Wang, J. L. Achieving low charge overpotential in a Li-CO2 battery with bimetallic RuCo nanoalloy decorated carbon nanofiber cathodes. ACS Sustain. Chem. Eng. 2020, 8, 2783–2792.

[18]

Yue, G. H.; Luo, X. R.; Hu, Z. Y.; Xu, W. J.; Li, J. T.; Liu, J. Z.; Cao, R. G. RuO2− x decorated CoSnO3 nanoboxes as a high performance cathode catalyst for Li-CO2 batteries. Chem. Commun. 2020, 56, 11693–11696.

[19]

Xu, S. M.; Ren, Z. C.; Liu, X.; Liang, X.; Wang, K. X.; Chen, J. S. Carbonate decomposition: Low-overpotential Li-CO2 battery based on interlayer-confined monodisperse catalyst. Energy Storage Mater. 2018, 15, 291–298.

[20]

Zhang, B. W.; Jiao, Y.; Chao, D. L.; Ye, C.; Wang, Y. X.; Davey, K.; Liu, H. K.; Dou, S. X.; Qiao, S. Z. Targeted synergy between adjacent Co atoms on graphene oxide as an efficient new electrocatalyst for Li-CO2 batteries. Adv. Funct. Mater. 2019, 29, 1904206.

[21]

Fan, L. J.; Tang, D. C.; Wang, D. Y.; Wang, Z. X.; Chen, L. Q. LiCoO2-catalyzed electrochemical oxidation of Li2CO3. Nano Res. 2016, 9, 3903–3913.

[22]

Ma, W. Q.; Lu, S. S.; Lei, X. F.; Liu, X. Z.; Ding, Y. Porous Mn2O3 cathode for highly durable Li-CO2 batteries. J. Mater. Chem. A 2018, 6, 20829–20835.

[23]

Luo, M. H.; Sun, W. P.; Xu, B. B.; Pan, H. G.; Jiang, Y. Z. Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2021, 11, 2002762.

[24]

Du, Y. M.; Li, B.; Xu, G. R.; Wang, L. Recent advances in interface engineering strategy for highly-efficient electrocatalytic water splitting. InfoMat 2023, 5, e12377.

[25]

Zhou, Q. X.; Xu, C. X.; Li, Y. X.; Xie, X. M.; Liu, H.; Yan, S. S. Synergistic coupling of NiFeZn-OH nanosheet network arrays on a hierarchical porous NiZn/Ni heterostructure for highly efficient water splitting. Sci. China Mater. 2022, 65, 1207–1216.

[26]

Zhou, Q. X.; Xu, C. X.; Hou, J. G.; Ma, W. Q.; Jian, T. Z.; Yan, S. S.; Liu, H. Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-Gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 2023, 15, 95.

[27]

Wang, R.; Zhang, X. J.; Cai, Y. C.; Nian, Q. S.; Tao, Z. L.; Chen, J. Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte. Nano Res. 2019, 12, 2543–2548.

[28]

Xu, Y. Y.; Xue, H. R.; Li, X. J.; Fan, X. L.; Li, P.; Zhang, T. F.; Chang, K.; Wang, T.; He, J. P. Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Res. Energy 2023, 2, e9120052.

[29]

Yuan, M. W.; Sun, Z. M.; Yang, H.; Wang, D.; Liu, Q. M.; Nan, C. Y.; Li, H. F.; Sun, G. B.; Chen, S. W. Self-catalyzed rechargeable lithium-air battery by in situ metal ion doping of discharge products: A combined theoretical and experimental study. Energy Environ. Mater. 2023, 6, e12258.

[30]

Xie, J. F.; Liu, Q.; Huang, Y. Y.; Wu, M. X.; Wang, Y. B. A porous Zn cathode for Li-CO2 batteries generating fuel-gas CO. J. Mater. Chem. A 2018, 6, 13952–13958.

[31]

Ma, W. Q.; Liu, X. Z.; Li, C.; Yin, H. M.; Xi, W.; Liu, R. R.; He, G.; Zhao, X.; Luo, J.; Ding, Y. Rechargeable Al-CO2 batteries for reversible utilization of CO2. Adv. Mater. 2018, 30, 1801152.

[32]

Wan, W. B.; Zhou, Y. T.; Zeng, S. P.; Shi, H.; Yao, R. Q.; Wen, Z.; Lang, X. Y.; Jiang, Q. Nanoporous intermetallic Cu3Sn/Cu hybrid electrodes as efficient electrocatalysts for carbon dioxide reduction. Small 2021, 17, 2100683.

[33]

Dong, C. Q.; Kou, T. Y.; Gao, H.; Peng, Z. Q.; Zhang, Z. H. Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting. Adv. Energy Mater. 2018, 8, 1701347.

[34]

Gao, H.; Wang, Y.; Guo, Z. Y.; Yu, B.; Cheng, G. H.; Yang, W. F.; Zhang, Z. H. Dealloying-induced dual-scale nanoporous indium-antimony anode for sodium/potassium ion batteries. J. Energy Chem. 2022, 75, 154–163.

[35]
Ding, Y.; Zhang, Z. H. Nanoporous Metals for Advanced Energy Technologies; Springer: Cham, 2016.
DOI
[36]

Zhang, J.; Dong, C. Q.; Wang, Z. B.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. A new defect-rich CoGa layered double hydroxide as efficient and stable oxygen evolution electrocatalyst. Small Methods 2019, 3, 1800286.

[37]

Zhou, Q. X.; Xu, C. X. Nanoporous PtCo/Co3O4 composites with high catalytic activities toward hydrolytic dehydrogenation of ammonia borane. J. Colloid Interface Sci. 2017, 508, 542–550.

[38]

Zhang, Z. H.; Zhang, C.; Sun, J. Z.; Kou, T. Y.; Bai, Q. G.; Wang, Y.; Ding, Y. Ultrafine nanoporous PdFe/Fe3O4 catalysts with doubly enhanced activities towards electro-oxidation of methanol and ethanol in alkaline media. J. Mater. Chem. A 2013, 1, 3620–3628.

[39]

Duan, H. M.; Hao, Q.; Xu, C. X. Nanoporous PtFe alloys as highly active and durable electrocatalysts for oxygen reduction reaction. J. Power Sources 2014, 269, 589–596.

[40]

Jian, T. Z.; Ma, W. Q.; Hou, J. G.; Ma, J. P.; Xu, C. X.; Liu, H. From Ru to RuAl intermetallic/Ru heterojunction: Enabling high reversibility of the CO2 redox reaction in Li-CO2 battery based on lowered interface thermodynamic energy barrier. Nano Energy 2023, 118, 108998.

[41]

Fang, J. H.; Li, M.; Li, Q. Q.; Zhang, W. F.; Shou, Q. L.; Liu, F.; Zhang, X. B.; Cheng, J. P. Microwave-assisted synthesis of CoAl-layered double hydroxide/graphene oxide composite and its application in supercapacitors. Electrochim. Acta 2012, 85, 248–255.

[42]

Chen, Y. X.; Jing, C.; Zhang, X.; Jiang, D. B.; Liu, X. Y.; Dong, B. Q.; Feng, L.; Li, S. C.; Zhang, Y. X. Acid-salt treated CoAl layered double hydroxide nanosheets with enhanced adsorption capacity of methyl orange dye. J. Colloid Interface Sci. 2019, 548, 100–109.

[43]

Hall, D. S.; Lockwood, D. J.; Poirier, S.; Bock, C.; MacDougall, B. R. Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel. J. Phys. Chem. A 2012, 116, 6771–6784.

[44]

Dai, L. N.; Sun, Q.; Chen, L. N.; Guo, H. H.; Nie, X. K.; Cheng, J.; Guo, J. G.; Li, J. W.; Lou, J.; Ci, L. J. Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Res. 2020, 13, 2356–2364.

[45]

Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281–2287.

[46]

Cheng, G. H.; Kou, T. Y.; Zhang, J.; Si, C. H.; Gao, H.; Zhang, Z. H. O22−/O functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 2017, 38, 155–166

[47]

Thoka, S.; Chen, C. J.; Jena, A.; Wang, F. M.; Wang, X. C.; Chang, H.; Hu, S. F.; Liu, R. S. Spinel zinc cobalt oxide (ZnCo2O4) porous nanorods as a cathode material for highly durable Li-CO2 batteries. ACS Appl. Mater. Interfaces 2020, 12, 17353–17363.

File
6461_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 November 2023
Revised: 14 December 2023
Accepted: 29 December 2023
Published: 02 February 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52201254), the Natural Science Foundation of Shandong Province (Nos. ZR2020QE012, ZR2020MB090, ZR2023ME155, and ZR2023ME085), the project of “20 Items of University” of Jinan (No. 202228046), and the Taishan Scholar Project of Shandong Province (No. tsqn202306226). The authors are grateful for the support provided by the Shandong Province Laboratory of Technology and Equipment for Molecular Diagnosis.

Return